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Abstract

The processes by which inventions are combi-
natorially generated and then gradually added
to existing cultural traits across many genera-
tions is considered to be a fundamental driver
of cultural evolution and technological change
in human societies. Does the patent record pro-
vide evidence that modern invention is an in-
stance of cultural accumulation? Here we ar-
gue that the presence of memory in the time
series of patents in the short term and a transi-
tion from sub-exponential to super-exponential

growth in the long term, constitute convincing
evidence that patents accumulate through a pro-
cess of collective learning akin to cultural accu-
mulation. We propose a simple model of inven-
tion based on a process of recombination of old
with current ideas that is consistent with data
and other results from the literature. The re-
sults and simple modeling framework presented
here highlight that although the pace and inten-
sity of invention has accelerated in the modern
era (i.e., since the Industrial Revolution), cul-
tural accumulation remains a relevant process in
human invention connecting inventive activity
across the whole of the history of Homo Sapiens
Sapiens.

1 Introduction

What is the evidence that patents are indeed
an instrument for fostering collective learning,
as the builders of the U.S. patenting system in-
tended them to be (I))? The patent system is
designed to solve the problem of insufficient in-
centives to invent because of the high costs in-
volved and the high risks of low rewards (due
to the non-rivalry of ideas). By giving property
and excludability rights to the inventor, the sys-
tem is supposed to make invention (i) a prof-
itable activity despite the costs and risks while,
at the same time, (ii) create a self-propelled, self-
referential, growing ecosystem of free-flowing
ideas. There is not much debate about the for-
mer. The evidence for the latter, however, is less



clear.

There has been extensive work investigat-
ing the flow of ideas (i.e., knowledge spillovers)
across inventors, regions, and technologies (e.g.,
(2;13)). This work has contributed to our under-
standing for how horizontal transfers of knowl-
edge happen, and how they are typically me-
diated by proximity in space (4)). Thus, there
is sound cross-sectional evidence that the gen-
eration of ideas is a social and collective effort
(55 [6). However, longitudinal evidence has been
limited to case studies in the form of patent ci-
tations which, while suggestive, is neither nec-
essary nor sufficient evidence that the patenting
system fosters collective learning.

Collective learning refers to our species’ defin-
ing ability to accumulate more knowledge with
each passing generation than is lost by the next,
each generating novelty and learning from what
has come before (7; [§). Collective learning is
thus a temporal process, but one in which accu-
mulated knowledge both constrains and propels
the future.

Culture is the example par excellence of a
body of knowledge accumulated through many
generations, and cultural accumulation is thus
the preeminent archetype of collective learning.
Humans owe their ecological success to culture
(8). This cultural capacity enables humans to
gradually accumulate information across gener-
ations in the form of tools, ideas, and practices
that no individual could invent, or recreate, on
their own (9)). If invention—defined here as the
creation of a new artifact, material, product,
process, or algorithm which was otherwise not
previously known in order to solve a problem—is
a process of cultural accumulation, the patent-
ing system stands as an institution that facili-
tates what is a basic process for humans to gen-
erate novelty (10). What evidence would refute
or support this view?

As has now become common practice in the
study of invention and innovation, we treat
patents as a proxy measure for invention (IT)
and use the accumulation of patents in time as

our main variable of interest. We will argue
that the phenomena of inventors patenting in
teams and patents citing previous patents both
support the hypothesis that invention is a cul-
tural process of collective learning. They are
not, by themselves, direct evidence of cultural
accumulation but rather evidence that there ex-
ists a channel through which cultural accumula-
tion might have occurred. It is precisely these
two features of patenting (collaboration and ci-
tations to “previous art”) which make the ques-
tion about whether invention is an instance of
cultural accumulation worth asking.

We argue here that evidence for the presence
of cultural accumulation must take the form of
clear statistical patterns, in the short and in the
long terms, in the time series of invention spe-
cific to how knowledge accumulates and builds
on itself through a process of collective learn-
ing. Detecting the traces of collective learning
using the history of the patent record is not an-
alytically trivial since the patent system is em-
bedded in a larger socioeconomic system. Be-
cause of this, we study only aggregate patterns
over the longest time frames available in order to
minimize the statistical impact of second order
effects. Notwithstanding these difficulties, we
present evidence that patents indeed accumu-
late according to a process of collective learning,
a finding consistent with the idea that invention
is a process of cultural accumulation (12)).

We emphasize that the mere detection of ac-
cumulation in the historical record of invention
is not, by itself, a sufficient indicator that an un-
derlying process of learning must have occurred.
In fact, many important processes of accumula-
tion in socioeconomic systems are not processes
of cultural accumulation. An example is popula-
tion growth. The “accumulation” of living peo-
ple on the planet is still not fully understood,
but is presumably a consequence of a deepening
of the carrying capacity of our social systems
(I3). Another example is the accumulation of
COs in the atmosphere, caused by human activ-
ity. It is likely that both these examples are con-



sequences of cumulative culture (14), but they
are not themselves processes of cultural accumu-
lation. The accumulation of patents is interest-
ing because it may be a very specific type of ac-
cumulation. Our task is to investigate whether
we can identify invention itself as a process of
cultural accumulation.

We report three main main findings. First, we
find that the microstructure of stochastic fluctu-
ations in the time series of cumulative patents
displays the presence of memory, in the sense
that changes in the inventive output have an
enduring multiplicative effect on all subsequent
rates of patent growth. Second, we find a long-
term transition from sub-exponential to super-
exponential growth, which is surprising, since
models of innovation only predict exponential
or super-exponential growth. Sub-exponential
growth could be caused by the increasing dif-
ficulty and complexity of patenting (I5). Such
explanation is at odds, however, with the recent
surge in patenting (I6). And third, we present
a simple model that is able to accommodate all
these observations, reconciling this transition in
the historical patterns of inventive activity with
the idea that invention is a process of cultural
accumulation in which old ideas recombine with
recent ideas to generate new ones.

We believe our results are interesting for at
least three reasons. Firstly, they bolster the
view that the patent system is yet another so-
cial practice that humans have devised to coor-
dinate their actions in order to act as a collec-
tive brain (12)). Secondly, the results presented
here imply that the U.S. patent system does in-
deed accomplish the mission codified in article
112 of the U.S. Patent Code which states that
“patents must clearly disclose and teach” (ital-
ics added for emphasis). Thirdly, as becomes
clear from the analysis below, we conclude that
a general process of collective learning cannot
be identified, in general, through a single kind
of growth (e.g., sub-exponential, exponential, or
super-exponential) as has been documented else-
where (17)), but can instead display a combina-

tion of growth regimes.

2 Invention and Learning

Processes of continuous and open-ended growth
seem to be a unique feature of the human
species. No other species has grown in popu-
lation and ecological extension so much as ours.
Another distinctive feature of the development
of Homo Sapiens Sapiens has been the scale and
diversity of its social organization. Why has this
growth not saturated or even halted? Given the
remarkable differences in size and heterogeneity
of human social systems as compared to other
animals, a central question in the field of human
evolutionary biology has been why do social sys-
tems grow in size and diversity at all (I8)? The
answer seems to be humans’ capacity for culture.

Work in the budding field of cultural evolu-
tion suggests that a lot of the growth exhibited
by socioeconomic systems is fueled by a process
of accumulation in which the solutions to prob-
lems found in a generation are handed down to
the next generation (19; 14). The claim is that
extensive growth in social systems, like growth
in population size, is the consequence of accu-
mulating a large number of tools, norms, beliefs
and knowhow that make a social system adap-
tive, and make it grow as it can occupy a greater
range of environmental niches (19). The accu-
rate transmission of information from one gen-
eration to the next allows solutions to complex
problems to accumulate. Humans have been
able to create a tool-kit (containing physical and
intellectual tools) allowing human groups and
populations to solve problems that are much
too hard for individuals to solve by themselves.
However, the transmission has to be accurate
enough so that small innovations are collectively
remembered more often than they are forgotten.

Collective learning was as important for the
development of new knowledge and technologies
for hunter/gatherers hundreds of thousands of
years ago as it is was for the development of
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All utility patents granted by the U.S. Patent Office by application year. (A “utility

patent” is a patent that covers the creation of a new or improved, and useful, product, process or
machine. Utility patents make up more than 90% of all granted patents.)

modern science and the practice of contempo-
rary invention (). If, to paraphrase (20)), the
central fact about the processes of invention is
that it is devoted to the production of informa-
tion, the process is driven by the sharing of infor-
mation. Recent historical analyses highlight the
importance of information sharing, and of the
social, economic and cultural preconditions that
facilitated such sharing, in the genesis of “mod-
ern science” (21, 22; 23). Scholars of innova-
tion from the time of the Industrial Revolution
to the present have emphasized the importance
of knowledge sharing as a fundamental source
of inventions. This sharing was important be-
cause it not only diffused new techniques, but
it also facilitated further, cumulative improve-
ments (5 24 25} 26). Knowledge sharing is not
mainly a modern development, as revealed by an
examination of the history of invention before
the 18th century (27). Nevertheless, there are
indications that knowledge sharing—as signified
by the prevalence of knowledge networks link-
ing Universities and firms and the dominance

4

of teams in the production of knowledge—is a
salient characteristic of contemporary invention
(28 29 B30; BT 15 32).

Does Figure (1} which shows the entire time-
series, spanning more than two centuries, of
the total number of utility patents in the U.S.
patent system, portray a process of cultural ac-
cumulation? Or is it just the time series of a
process of accumulation of items in a historical
record? One indication that invention is a pro-
cess akin to cumulative culture is the evidence
that patenting is a combinatorial process (33).
Each patent represents a novel combination of
ideas. Ideas are coded as “technologies” in the
U.S. patent system, and together with the set
of ‘claims’, they define what a patent is. Tech-
nologies can be regarded as the atomic basis of
patents and can themselves be new or old. That
is, a patent can simply use extant technologies,
or introduce new ones[l| Patented inventions are

!The definition of “technology” used by the U.S.
Patent Office is more than adequate for our purposes:
the “application of science and engineering to the devel-



increasingly the result of combinations of extant
technologies (33)).

The discreteness inherent to the inventive pro-
cesses has been recognized by many scholars be-
fore and has been deemed as essential to the
process of invention (36; B7; 38; B9; 40). From
the vantage point of the field of cultural evolu-
tion, we ask again the question posed by Martin
L. Weitzman in reference (38): “What are the
generic mathematical properties of a combina-
toric growth process?” At first sight, two generic
properties appear to emerge from the combi-
natorial nature of invention: super-exponential
growth (that is, growth that is faster than expo-
nential) and path-dependency (41 38; B39). To
what extent are these properties present in Fig-

ure [IP

More than half a century ago Harvey C.
Lehman provided the first thorough review of
the accumulation of culture in different ar-
eas of knowledge such as philosophy, medicine,
economics, and many others (using data that
started in 1200AD for some areas) (42)). He con-
cluded that accumulation in all these fields fol-
lows an exponential curve. Enquist et al. (2008)
(43) posits that culture begets culture, and this
explains why the accumulation of culture in-
duces exponential growth. But how to recon-
cile the super-exponential growth predicted by
models of recombination of ideas with the ob-
served exponential growth of culture? Is the ex-
ponential growth an indication that the super-
exponential production of culture is constrained
by the limitations of society to absorb new ideas
as argued by (39), and if so, is culture lim-
ited to grow according to the growth of popu-
lation size? Or should we consider the accumu-
lation of culture a different phenomenon from
the recent phenomena of technological progress,
given that some series related to distinctly mod-
ern knowledge-based activities do indeed ex-

opment of machines and procedures in order to enhance
or improve human conditions, or at least to improve hu-
man efficiency in some respect” (34)) citing (35, p.384).

hibit super-exponential growth, such as perfor-
mance curves in aerospace propulsion systems
(44), computing performance (45) or returns in
financial option markets (46)?

Enquist et al. (2011) (I7)) show that cultural
growth can alternate between linear, exponen-
tial, or super-exponential depending on how cul-
tural traits are acquired. For example, if cul-
tural traits are acquired independently from one
another, culture will grow linearly. This process,
then, should not be referred to as cultural accu-
mulation since there is no sense in which a popu-
lation of individuals interact or coordinate their
actions in the process. (I7) show that if cul-
tural traits are not acquired independently but
instead depend, somehow, on each other, culture
can grow following different functional forms. In
particular, they show that exponential growth
occurs when accumulation is driven by differ-
entiation, i.e., when an element becomes two
slightly different new versions (e.g., branching),
and that super-exponential growth occurs when
accumulation is driven by recombination. This
provides a clear distinction between processes of
collective learning from collective processes of
individual learning. According to (I7), the for-
mer produce exponential or super-exponential
growth, while the latter will only produce lin-
ear growth. We examine next which of these
patterns, if any, are present in Figure [I]

Path dependence is much harder to conclu-
sively identify in the historical record. Partly
because it is an “umbrella” term to refer to
many different phenomena (see (47) for a re-
view and clarification of all the facets behind
the notion of path dependence). Paradoxically,
however, it is perhaps one of the topics more
extensively discussed in the literature on tech-
nological change (48; 49; [50). Some scholars
have recently proposed new mathematical mod-
els that incorporate the serendipitous aspects of
invention, how these can open or close further
paths of invention and sometimes lead to waves
of innovation (51 52; 53). With these models
one can derive statistical laws describing nov-



elties, such as their temporal-burstiness (time
clustering), their growth (e.g., Heaps’ law) and
probability distribution (e.g., Zipf’s law). Our
study of path dependence in the patent record
differs from these previous works in a simple as-
pect. We will ask whether “shocks” in the rate
of invention have lasting effects in subsequent
production patents. We will frame evidence of
this by showing that the time series of invention
display “memory” in a statistical sense.

In the next sections we describe the data and
the methods used to examine the accumulation
of patented inventions as an instance of cultural
accumulation driven by collective learning. We
will first study the evidence for memory in the
time series of patents. We will follow with an
analysis of the long-term growth of patents to
look for exponential or super-exponential pat-
terns. We then present a simple mathemati-
cal model that reproduces some of the empirical
findings.

3 Materials and Methods

3.1 Unit of invention

Anthropologists study culture by identifying
cultural “traits”.  The “cumulative” part of
culture stems from the accumulation of traits
through generations. But what is a cultural
trait? The claim that culture changes through
a process akin to Darwinian evolution has as a
consequence that culture can change by drift, or
by adapting to social or physical environmental
challenges (54} 55). The unit of replication (i.e.,
a cultural trait) must take the form of “men-
tal representations” that humans can learn and
teach easily, which, by their Darwinian origin,
solve specific challenges or accomplish particu-
lar tasks (56)). If we want to compare the process
of invention to that of the accumulation of cul-
ture, what should be used as the equivalent of a
cultural trait?

The notion of “unity of invention” in patent

law has the purpose of restricting patents to
only those inventions that solve a specific prob-
lem or accomplish a particular task. One of its
purposes is to preclude bundling several inven-
tions in a single patent application. Here, we
appeal to the unity of invention to argue that
the patent record is a system of accumulated
solutions whose size can be quantified simply by
counting patents in the system. Since cumu-
lative culture is the social phenomenon of ac-
cumulating solutions to problems, the unity of
invention principle allows us to use patents as
our unit of analysis. We count patents by their
year of application, as is custom, to best account
for the moment an inventor considered he or she
had a new solution to a problem good enough
to apply for a right to exclusion.

3.2 Quantifying the presence of
memory

If invention is to be understood as a process of
cultural accumulation, then patents are at the
same time the input and the output of a process
of collective learning. Thus, we want to empha-
size that patents are “tools for learning”, and as
such, a patent can (and should) in principle af-
fect permanently the rate of future learning (and
by implication the future rate of invention).
The hypothesis we want to test is whether a
stochastic shock in the rate of invention has an
effect on the future rate of inventions that is
permanent or transitory. This hypothesis can
be tested through a unit root test. The simplest
stochastic process with a “unit root” is
z(t) = azx(t — 1) + &, (1)
when @ = 1. The term ¢, is a stationary, serially
independent, mean zero noise random variable.
The essence of a sequence z(t) with a unit root
is that it depends on what has happened before.
The value of @ in Equation determines how
much the past affects the future. In the simple
case of Equation (1)), replacing iteratively, we



get that
r(t) =a'x(0) +a" e+ ... +agq +ep

If a < 1, the effect of past shocks €; on the future
decay exponentially, and x(t) has a stationary
behavior. If @ > 1, then past shocks are increas-
ingly amplified with time and z(¢) has some “ex-
plosive” and unstable dynamics. But if a = 1,
then all past events affect the present equally,
and xz(t) is said to have memory, or technically
speaking, to have a ‘unit root’.

Typical time series contain both a stochas-
tic and a deterministic component. Thus, it
must be emphasized that in this section we
are interested in the behavior of the stochas-
tic component in our time series (in the next
section we will address the deterministic com-
ponent). As is custom, we use the augmented
Dickey-Fuller (ADF) test as the unit root test,
which allows a more flexible time-series model
than the usual Dickey-Fuller (DF) test for Equa-
tion . To complement the ADF test, we use
the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
test to assess trend stationarity. We will sequen-
tially take time differences of our time series,
seeking the point in which (i) we cannot reject
stationarity (KPSS test) and (ii) we can reject
the presence of a unit root (ADF test). If both
conditions (i) and (ii) are met at a given stage
of differencing, then there is evidence that the
time series before the last differencing has a unit
root. We interpret evidence of a unit root as
evidence of memory. We leave some additional
details about testing unit roots in Appendix A.

3.3 Characterizing
growth

long-term

Exponential growth is usually conceived as “dis-
ruptive” or “interesting” (e.g., [57). Mathemati-
cally, however, exponential growth is quite sim-
ple. It occurs when a variable doubles whenever
a fixed amount of time has elapsed. What is
interesting is the fact that exponential growth

is at the boundary between two very differ-
ent patterns of growth. We will say that the
growth is sub-exponential when the amount of
time needed for the variable to double becomes
longer and longer as the variable grows, and we
will say it is super-exponential when the dou-
bling time becomes shorter and shorter. A spe-
cial property of the latter is the existence of a
moment in time in which the variable becomes
infinite. Since this cannot happen in reality, this
so-called “finite-time-singularity” typically rep-
resents a phase-shift.

As we discussed in Section [2| these different
types of growth can be used to characterize in-
vention, and use this characterization to learn
whether invention is a process of collective learn-
ing based on the theories that have been pro-
posed elsewhere.

These three different types of growth can be
characterized by a single parameter ¢ through
the following differential equation

i(t) = ya(t)’, (2)

where z(t) is the accumulated number of patents
until year ¢, @(t) is its time-derivative (i.e., the
new patents in a relatively small interval dt, pos-
sibly a year), and v and 0 are coefficients on the
real line. Solving Equation to get = as a
function of time,

z(t) d t
/ & vdt,
x to

0 xd

(3)

yields the general solution:

1
—~5 =)
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Lo
Depending on the value of §, Equation mod-
els our three types of dynamics we are interested
in:
1
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where ¢, = (y(1 — V=D ¢ = (y(6 —
1)Y= and taiiea = to + (0 — 1))t s
the critical time that defines the finite-time sin-
gularity when § > 1.

Equation describes sub-exponential
growth, Equation (5b) exponential growth,
and Equation super-exponential growth.
Empirically, we will test which of these curves
fits the data best by estimating the parameter
d on a linear regression using Equation ([2)).

4 Results

4.1 Memory in invention

Figure [2| shows, on the left panel, the accumu-
lated patents z(t) and its first and second differ-
ences, and on the right panel, the logarithm of
x(t), and its first and second differences. Note
that the first difference of In(z(t)) is approxi-
mately the percentage change, r(t), of x(t).

Our main finding here is the plot shown at the
bottom-right of Figure [2] This plot shows the
point where we can reject the hypothesis of a
unit root and simultaneously cannot reject the
hypothesis that this is a stationary series. In
other words, both tests suggest strong evidence
of a stationary sequence of random noise de-
scribing the change in growth rates from year
to year.

In this bottom-right panel of Figure[2] around
the 1850’s, we observe an initial period in
patenting in which the series of Ar(t) has an
unusually large variance. After this period, how-
ever, the time series of the yearly change of the
rate of growth of the accumulated patents is
more regular. That is, Ar(t) ~ u(t) + &, where
g, are serially uncorrelated variables and p(t)
is possibly a deterministic trend, although most
probably equal to zero in this case.

The results of the statistical tests imply that
the series just above the bottom-right plot in
Figure 2 has a unit root. We can see this by
noting that Ar(t) ~ u(t) + &; implies that the

rate of change of patenting is the same as rate
of change of the previous period, plus something
that can be deterministic with some stationary
noise, r(t) = u(t) + r(t — 1) + &,. Hence, we
say that growth rates r(¢), and in turn the ac-
cumulated patents In(z(t)), have memory. The
results of the statistical tests, however, do not
tell us much about the deterministic components
of these series, which characterize the long-term
growth patterns of invention.

4.2 The long-term trends of in-
vention

The last section presented evidence that the
stochastic part of the patenting time series has
memory. We now turn our attention to the long-
term trend (the “deterministic” part in the lan-
guage of the last section). We want to know
if the time series of invention is consistent with
previous models that predict either an exponen-
tial or a super-exponential growth process for
the learning-mediated accumulation of knowl-
edge.

We take logarithms on both sides of Equa-
tion to carry a linear regression and study
the value of the coefficient ¢:

In(y(t +1)) =1In(y) + éIn(z(t)) + &,  (6)

where y(t + 1) = z(t + 1) — z(t) is the first dif-
ference of x(t).

Figure |3 shows this correlation, and we find
that 0 ~ 0.772. The estimated value of this co-
efficient implies that a 1% increase in the total
body of patents is historically associated with
an average increase of 0.772% in the number
of new patents that are produced in the sub-
sequent year. The result of this simple regres-
sion shows that, overall, the accumulation of
patents has been sub-exponential over the whole
period of time. Thus, the general trend is bet-
ter described by the first solution given in Equa-
tion (a)). Sub-exponential growth is unexpected
because none of the models we reviewed pre-
dicted such trend. In addition, it is unexpected



given that the population of inventors does not
grow sub-exponentially. And yet, it is a sys-
tematic pattern over approximately 200 years.
The sub-exponentiality of invention can be ob-
served already in Figure 2| as the concavity of
top-right’s plot.

The long-term trend in Figure [3, however, re-
veals more than simple sub-exponential growth.
One can also observe that there are some sub-
trends and some sustained deviations from the
line.

Deviations from pure sub-exponential growth
are observed in more detail in Figure [d Patents
grow slower, equal or faster than exponentially
on different periods. We quantify this depen-
dence of parameter § on time by running the
same regression as in Equation @, but for
limited windows of 50 years. We let this 50-
year window roll over the whole sample. Fig-
ure WA plots the estimated value ¢ for each win-
dow. The error bars represent +/— one stan-
dard error. Broadly, there are four epochs: from
1789 to 1836, from 1837 to 1868, from 1869
to 1944, and from 1945 until 2015. Break-
ing the time series at those years, we observe
that there are small periods of super-exponential
growth. In Figure we show the estimated
regression lines of those four periods. Red
points move away from the 45° dashed line,
hence they represent sub-exponential growth;
Blue dots move towards the 45° dashed line,
hence they represent super-exponential growth.
We find 51789—1§36 = 0.56 (:|:004), 51837—1868 =
1.64 (£0.07), d1869-1944 = 0.46 (£0.02), and
O1045_2015 = 1.58 (£0.06). We plot in YC the
accumulation across years and these breaks.

It is interesting to note that the period after
1869 is recognized by historians as a moment
of rapid economic growth in the US where the
“American system of invention” played a central
role (58). And yet, the period from 1869 un-
til the Second World War is the longest period
in which patents accumulated sub-exponentially.
Only since after the War that patents have been
accumulating super-exponentially. In the next

section we develop a model that reproduces the
observed patterns and is consistent with the
claim that the accumulation of patents is a pro-
cess of cultural accumulation. In this way, we
show that a single process can explain the tran-
sition from sub- to super-exponential growth.

4.3 Mathematical model

Three main drivers are typically considered to
explaining the production of inventions (59; [12)):
the size of the population of inventors, interac-
tions between inventors (i.e., collaborations and
spillovers), and the recombination of inventions.
These three drivers correspond to facilitators of
invention in human societies (assuming that use-
ful inventions are rare): larger populations (i.e.,
more brains) have a greater likelihood of gener-
ating inventions (60} [I8; [61)); a connected popu-
lation of inventors increases the likelihood that
information flows will result in increased inven-
tion rates (62)); and invention is predominantly
a process of combining existing technologies to
generate novelty (e.g. [63)).

In order to offer an analytic explanation of
the observed patterns of patenting growth, we
first examine what is the relation with popula-
tion size. Given that the majority of patents in
the USPTO are originated in the U.S., we plot
in Figure [5| the number patents produced per
decade and the U.S. population according to the
census at the origin of the decade. On the left
panel we can see that the production of patents
is more variable in time than population, while
on right panel we see the association between
the two variables. The two variables are asso-
ciated through a power-law relationship, but we
observe some sustained deviations.

The model we present in the next section
excludes population size and the interactions
between inventors. We focus instead on the
idea of combinatorial growth in order to explain
the transition from sub-exponential to super-
exponential growth. Models treating popula-
tion size and interactions explicitly are discussed



briefly in Appendix B.

4.3.1 Simple model
growth

of combinatorial

The model we propose here is based on
Weitzman’s model of recombinant growth (39).
Weitzman’s null model states that the new
patented inventions added to the system are the
result of combining all the possible pairings be-
tween patents that have not been crossed before:

()

all current combinations

next current

z(t+1) = g(?) +a

x(t)
2

2(

(

(7)

where « is a constant and (2) =n!/(kl(n—k)!)
is the number of different ways one can choose k
elements among n. Note that only pairwise com-
binations are considered in this model, although
Weitzman generalized his results to higher order
combinations.

Weitzman’s work is focused on showing that
the process of growth in Equation ([7]) is super-
exponential, which means it will reach a finite-
time singularity and, consequently, is not sus-
tainable. In other words, the process must even-
tually encounter some constraint. Weitzman as-
sumes the constraint is the population’s capacity
to process the overproduction of all new ideas
(39). We will not dispute this conclusion. In-
stead, we formulate a modified model whose goal
is to also predict super-exponential growth, but
only after a phase of sub-exponential growth, as
observed in the historical record of patents.

The modified model is very similar to Equa-
tion , but with a subtle change. The differ-
ence between Equation ([7]) and the model we are
about to present is that in Weitzman’s model
patents are allowed to recombine with other
cotemporaneous patents, at the moment they
are generated. In our model, at least one pe-
riod has to pass, and then only the most recently
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added patents will be able to combine with (a
fraction of) the previously existing ones. This
restriction is consistent with the fact that the
prior art of new patents overwhelmingly refers
to recent patents (64). This minor modification
has significant consequences.

The model’s building blocks are:

1. A fraction pygq of old patents at any given
point in time are recombinable. Thus, a
fraction 1 — pgq of the old patents are for-
gotten or obsolete and hence cannot be used

all previous Comlﬁypt'{t@@ mbinations;
——

toy 1%)1ere re some constraints from the speci-

2 ity (dqr specialization) of patents that pre-
vents the new patents from combining with
the old patents, and thus only a propor-
tion ppew Of the most recently added patents
(i.e., added in the most recent period) can
be combined with the old ones;

. And finally, we assume not all possible re-
combinations are in fact discovered but only
a fraction, pgisc.

Putting all these assumptions together yields

z(t +1) = 2(t) + paise[Prew (2(t) — 2(t — 1))][poraz(t — 1)].
(8)

The constants can all be combined such that

Q' = PoldPnewPdisc- 1 he model becomes:

c:l_r/r&t

z(t+1)= z(t) +ax(t—1)x

——

old patents

next

(x(t) —x(t —1))

most recently added patents

(9)

There is no analytic solution for Equation @
However, Equation (9) can be re-expressed in
continuous time which can lead to a more
tractable differential equation (we show the
mathematical steps for doing so in Appendix C).
In continuous time, we write the model as

dy(t)

dt

recombination

= cy(t)(x(t) = 1), (10)



where ¢ is a new constant replacing the role of
p. The solution is

—1 K K 1 :CO—l
[L’(t) = + ?tan <2t—|—tan < K/C )),
(11)

where K = v/2yoc — ¢ and xy = z(0).

The trigonometric tangent function has in-
teresting properties and predicts an interesting
behavior for the growth of patents. It has an
initial sub-exponential growth but then gradu-
ally transitions into super-exponential growth.
Thus, tangent growth leads to a divergence at a

“critical time”
2 o — 1
— —tan™! .
K ( K/c>

One can re-express Equation (11)) as

T
Leritical = X

K ™ K
t :1 7t *_7tcriica_t . 12
o) = 1+ = tan (5 = T tsiea — 1)) - (12)
For the empirical validation of such simple
model, we fit the following equation:

z(t) =14 Atan (Bt + ¢), (13)
where A, B, and ¢ are free parameters we need
to estimate. We compare the fit of Equation
to that of an alternative model with cubic terms,
with also three parameters:
2(t)=A+B(t—0)°. (14)

We refer to this model as “Cubic Model” in Fig-
ure [0l

The estimation of these models is done to the
data post-1870, since that date is after the short
period of super-exponential growth. Figure [6]
shows the fits of both models, putting the y-axis
in logarithmic scales. According the estimated
values of the parameters of Equation we
can recreate the parameters of Equation (12]),
in particular the critical time. For that we get
the year teptical &~ 2051.
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The model presented in the previous section is
incomplete: it treats the process of invention as
an abstract process of recombination and does
not take into consideration the endogenous re-
lationships between technological progress, eco-
nomic growth, and population size. While there
is ample evidence that larger populations have
higher inventive activity (31)), it remains as fu-
ture work to model explicitly the cross-sectional
patterns connecting invention to demographic
variables together with the longitudinal patterns
found here.

5 Discussion

The motivation for the present work was to as-
sess the view that the U.S. patenting system
is an institution that promotes collective learn-
ing akin to the process of cultural accumulation,
and learn whether the historical series of patent-
ing present clear empirical “signatures” for such
a process. We used the framework of cultural
evolution to generate two hypotheses: first, the
time series of patent accumulation ought to have
memory; second, the overall pattern of growth
should be consistent with a model of recombina-
tion of ideas. The first hypothesis is about the
characteristics of the fluctuations on short time
scales, while the second hypothesis is about the
trends on the long term. In our empirical inves-
tigation, we used the series of total number of
patents granted in the U.S. by their application
year, from 1790 to 2016, and we found evidence
supporting both hypotheses. These results un-
derline the connection between patenting, com-
binatorial growth, and the process of learning by
accumulating knowledge.

Specifically, we found that the small fluctua-
tions in patenting rates have a “unit root”. This
result suggests the system has memory, whereby
shocks in the patenting rate shift permanently
future rates. Thus, patents are not only in-
ventions which solve past problems, but tools
that teach future generations of inventors how



to solve future problems. In this way, a set of
inventions patented in a given year can perma-
nently change the rate of future patenting.

With regards to the long-term accumulation
of patents, we found that new patents produced
in a given year to be a power-law function of
the total number of accumulated patents until
that moment. Power-law relationships like these
are typical in the literature of “learning curves”
(e.g., see (65))), and suggest a systematic pro-
cess of cumulative learning. Thus, the growth
of patenting is more tightly connected with the
size of patents produced thus far, than with how
much time has passed since the process started.
Put differently, it is the body of accumulated
knowledge itself which drives the production of
new inventions. It is consistent with anthropol-
ogists” view of a process of cumulative culture.
Notably, the value of the exponent in this power-
law implied that the series is not characterized
by neither exponential, nor super-exponential,
growth, as predicted by conventional models of
innovation. Instead, we found a more involved
pattern in which the accumulation is character-
ized by a first phase of sub-exponential growth
followed by a super-exponential phase.

Notably, over the span of the U.S. Patent
Office history, we found that the cumulative
number of patents has grown sub-exponentially
for the most part. Such growth is unexpected
given the approximately exponential growth of
population, increased channels of information
flows, and the accelerated process of globaliza-
tion since the Industrial Revolution. The con-
nection between demography and invention is
a question that has received a lot of attention
in anthropology and economics (see, for exam-
ple, (66; 67 ©60; 18; (9 68; 69)). The patent-
ing record suggests that although there is a
relationship between invention and population
size it is not a straightforward relationship, and
inventions have dynamics that play on top of
those of population growth. For example, de-
spite the fact that fertility rates have been falling
steadily (especially in high-income countries),

we found that patent growth has become super-
exponential since the Second World War.

We proposed a simple combinatorial model
that reconciles all these observations by assum-
ing that patents can only recombine to pro-
duce new patents (33). Crucially, however,
patents in our model cannot recombine with
contemporaneous patents, and this allows the
model to accommodate an initial phase of sub-
exponential growth followed by a transition to
super-exponential growth. This type of growth,
which is well described by a tangent function.
Future work should aim to find this same em-
pirical signature in other systems of collective
learning.

We do not claim our model to be a realis-
tic representation of the process of invention,
but it serves as evidence that aspects that are
deemed as essential in the process of invention—
recombination and building on the past—can re-
produce these broad empirical observations.

The word “patent” comes from the Latin word
“patere”, which means “to lay open”. Histor-
ically patents have had the mission of disclos-
ing new practical knowledge clearly enough that
others can use it and build upon it (70; [71).
Patenting systems can be therefore presumed
to be institutions that coordinate and promote
the accumulation of know-how, with the patent
record providing evidence of such an accumula-
tion. If this presumption is valid, then patent-
ing should grow like culture grows, and the pro-
cesses of invention should mimic those of cul-
tural accumulation. The results presented here
are a modest contribution towards a new per-
spective on patenting, namely as an instance of
cultural accumulation.

If our findings keep having empirical support
in the future, then they may change how we
conceive the process of invention. In particu-
lar, they will lend support not only to the view
that invention is a collaborative effort, but also
that it is truly a process of collective learning
across generations.
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Augmented Dickey-Fuller Test: Hy = Unit Root

Kwiatkowski-Phillips-Schmidt-Shin Test: Hy = Trend Stationarity
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Appendix A. Testing unit
roots

A naive test for the presence of a unit root, one
performs a regression of Ax(t) = z(t) —x(t — 1)
against By + frz(t — 1). If there is a unit root,
then £, = 0, and BI should not be significantly
different than zero.

In practice, it is hard to reject the hypothesis
of the unit root if one simply tests for Hy : a = 1.
Time series often pass this unit root test sim-
ply because time series are typically neither sta-
tionary nor ‘explosive’ (see discussion by [72).
Thus, one seeks in practice to find the stage at
which the null hypothesis of the unit root can be
rejected by differencing the series several times
(i.e., y(t) = Ax(t), z(t) = Ay(t), etc.). At that
point, the time series should be stationary. This
implies that one should also aim to test for sta-
tionarity in addition to unit root. By “stationar-
ity” we mean “trend stationarity”, which refers
to a time series like z(t) = u(t) + &, in which
w(t) is a deterministic trend while ¢; is station-
ary noise.

The augmented Dickey-Fuller (ADF) test al-
lows a more flexible time-series model than the
usual DF test. For trend stationarity, we use
the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
test. As we sequentially take time differences of
our time series, we are looking for the point in
which (i) we cannot reject the KPSS test and
(ii) we can reject the ADF test. If both con-
ditions (i) and (ii) are met at a given stage of
differencing, then there is evidence that the time
series before the last differencing has a unit root.
Evidence of a unit root is therefore evidence of
memory.

We note that a unit root test can be utilized to
test whether the growth of a system has experi-
enced a regime change (73)) (see, however, (72)).
(74) deploys a unit root test to assess whether
the rapid growth in patenting noticeable in the
United States starting in the mid-1980s truly
represented a break from past growth dynam-

21

ics. Here we are interested in the characteriza-
tion of the growth of patents over a longer period
and how such growth constraints any explana-
tory account of the underlying processes driving
the observed growth.

Appendix B. Model of
patents as the output of
inventors interacting in cities

To capture the effects of scale and connectiv-
ity on invention we proceed by treating (as the
historical record justifies) patenting as an urban
phenomenon (31) and focus on the growth of
patenting output in a single city. The assump-
tions of the model are:

1. Population of the city grows exponentially
at a rate g, N(t) = Npe?'.

2. Inventors disproportionately concentrate in
larger cities, and the number of inventors
I(t) per year follows the relation I(t) =
IoN(t)?, where 3 > 1.

3. The number of new patents produced by all
inventors alive at that moment in the city
in small interval (e.g., a year, At = 1 year)
is proportional to all pair-wise interactions
between inventors, y(t + At) = Ax(t) =
cI(t)2At, where c is a fixed proportionality
constant.

The solution to these assumptions for how
patents will accumulate with time in that is

t /
z(t) = / c <IONOBeBQt )2 dt’

to

2
_ (C[02N0ﬁ> (825gt _ e?ﬁgto) ‘
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As is evident, population growth in this model
drives the growth of patents. Urban agglom-
eration of inventors and their interactions only
change the rate in the exponential growth,

(15)



which in this case becomes Ax(t)/z(t) = r =
28g. It is thus difficult to explain the sub-
exponential increase of patents in the US patent
record and the transitioning to periods of super-
exponential growth with urban agglomeration
effects.. One could get a transition from ex-
ponential to super-exponential if one includes
all the possible orders of interactions. Alterna-
tively, super-exponential growth can also emerge
by aggregating the contributions of all cities to
the national level, for example, assuming that
the rate of population growth is fixed for each
city but it is drawn from a normal distribution
across cities, g ~ N (pg,07) (proving that this
leads to super-exponential growth at the aggre-
gate national level is left to the reader as exer-
cise).

We readily acknowledge the possibility that a
complex mixture of population growth, spatial
agglomeration of inventors, globalization, and
historical contingencies on the evolution of the
economy and the institutions supporting inven-
tive activities, may explain the patterns we ob-
serve. In other words, there is no reason to ex-
pect that a simple model will faithfully repro-
duce real data. Notwithstanding this possibility,
we limit our analysis to our unabashedly simple
model of recombination of patents which, while
abstracting away many of these aspects, still is
able to reproduce the data surprisingly well.

Appendix C. Mathematical
steps

Here we show how to express the model in con-
tinuous time.

Let the “recently added” patents be y(t,) =
x(tn) — x(tp—1). In this way, the equation be-
comes

Y(tntr) = py(tn)z(tn-).
Subtracting from both sides y(t,),

Y(tnr1) = y(tn) = py(tn)(z(tn-) — 1).

Assume t,,1 = t, + h and let h — 0, such
that y(t) = dz(t)/dt = lim,_ w, and
dy(t)/dt = 2a(t) /dt? = limy, o Lnt)=vlin)

h
Rearranging, we get

WD) oyt a) 1) =0

y(t) (dy —c(z(t) — 1)) = 0. (16)

dzx

Hence, there is a trivial solution coming from
the term y(t) = 0, which gives x(t) = zo, a fixed
and constant number of patents.
The other solution comes from solving the
equation
dy

— —cx+c=0.

1 (17)

The solution is

y(x) = ; (cx2 — 2cx + 2yo> ,

where y(2(0)) = yo. The next equation we thus
need to solve is

de 1 (cx(t)2 — 2cz(t) + 2yg) :

dat 2 (18)

22



	Introduction
	Invention and Learning
	Materials and Methods
	Unit of invention
	Quantifying the presence of memory
	Characterizing long-term growth

	Results
	Memory in invention
	The long-term trends of invention
	Mathematical model
	Simple model of combinatorial growth


	Discussion
	Appendix A

