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The study of cultural evolution has suggested that culture accumu-
lates as know-how gets transmitted from group to group, and from
generation to generation. The lack of a firm quantitative formalism
that takes into account the structured process of how this accumu-
lation occurs precludes the development of a unified view of human
development in the past and in the present. The process of accumu-
lating and coordinating increasingly complex productive capabilities
is still what drives the economic development of nations, regions
and cities, as has been well documented in many empirical studies.
We show here that the Theory of Economic Complexity presents a
basis on which to construct such formalism. We present a combina-
tion of analytical, numerical and empirical results that illustrate how
to characterize the process of development, providing measurable
quantities that can be used to predict future developments. The
emphasis is the quantification of the collective know-how an econ-
omy has accumulated, and what are the directions in which it is
likely to expand. As a case study we consider data on trade, which
provides consistent data on the technological diversification of 200
countries across more than 50 years. Our results are relevant for
anthropologists, sociologists, and economists interested in the role
of collective know-how as the main determinant of the success and
welfare of a society.

Introduction
For more than a century the field of anthropology has known
that human societies, while highly dynamic, diverse, and id-

iosyncratic, change diachronically through a series of stages
of “complexification” (1; 2; 3). This particular way of cul-
tural unfolding is the result of two processes: one is the diffu-
sion and transmission of cultural traits across human groups
and across generations, while the other is the development
(through chance or insight) of more complex traits, which is
conditionally enabled by previous developments of less com-
plex traits. The question of whether modern countries, regions
and cities develop through these same processes has not been
fully studied and analyzed. Here we develop an analytical
framework to analyze such processes, and we present strong
evidence that they still stand as the fundamental workings of
today’s modern societies.

The first piece of evidence that the same processes that
have shaped cultural evolution for thousands of years are still
driving current economic development comes from the nest-
edness of technological matrices (Fig. 1). Presenting observa-
tions and their properties ranked and ordered in such a way to
reveal a triangular pattern has been used by many disciplines
and for many years. Robert Carneiro imported this analysis
to anthropology from psychology more than fifty years ago.
It has also been at the center of ecology, and more recently,
in the study of the patterns of economic development.
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Figure 1: [I THINK WE SHOULD START WITH A FIGURE SHOWING THE PATTERN OF NESTEDNESS (OR LACK THEREOF) IN DIFFERENT
TYPES OF ASSOCIATIONS, DIFFERENT CONTEXTS, DIFFERENT SCALES, AND DIFFERENT TIMES]

Among the many theories of socioeconomic evolution, one
that has recently gained attention is the Theory of Economic
Complexity (TEC) (4; 5; 6; 7; 8; 9; 10). TEC emphasizes the
flows of tacit know-how as opposed to the flows of ideas, capi-
tal or labor. Importantly, TEC emphasizes the combinatorial
quality in which qualitatively different pieces of know-how can
complement each other, instead of the emphasis traditionally
given to knowledge spillovers and the unstructured flows of
ideas (11). The main take-away from TEC is that societal
development is the process of both accumulating, coordinat-
ing, and successfully deploying, qualitatively different pieces
of productive know-how.

TEC has already proven to be a unifying paradigm. It
explains why rich countries are diverse while poor countries
are not (12; 13), which itself suggests that economic develop-
ment is process of diversification, not specialization. TEC also

suggests an explanation for the phenomenon of urban scaling,
whereby larger cities are disproportionately more productive
(14; 15), and it explains and predicts how do regions (cities,
regions or countries) diversify over time (16; 17; 18; 5; 19;
20). Central to this paradigm is the question of how much
does a team of individuals know? In other words, it pushes
the research agenda towards the task of quantifying collective
know-how, and tracking the way it grows, contracts, and is
transmitted from society to society and from generation to
generation (21; 22).

The notion of collective know-how has to be distinguished
from the notion of human capital. Human capital, as it has
been used in the literature (23; 24; 25) is an individual-specific
property. In contrast, collective know-how is a group-specific
property. Societies may or may not have individuals with high
human capital, but still have high collective know-how. That
is, a collective of individuals that know is different from a col-
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lective that knows. In an extended interpretation, collective
know-how can be seen as the body of culture, as is defined in
the field of Cultural Evolution (26; 27; 28; 29; 30; 31; 32; 21;
22; 33; 34). In this field, the term “cultural accumulation” is
precisely the process of expanding a society’s body of collec-
tive know-how. In other words, cultural accumulation is the
process of collective learning.

The field of cultural evolution has shown the difficulty of
formalizing the notion of collective know-how. Hence, there
many ongoing efforts about measuring the collective know-
how of groups of individuals (35; 36; 37; 38; 39; 40). Concep-
tually, it is even difficult to define what know-how is. In the
literature of cultural evolution, the amount of culture (i.e.,
the size of a society’s collective know-how) is proxied by the
number of cultural elements (e.g., the number of technolo-
gies and tools in the cultural repertoir). Similarly, one good
proxy for the collective know-how of a country is the number
of products it exports to the world. Hence, it is reasonable
to define know-how as “the size of all the different things the
society knows how to do”, analogously to how we assess stu-
dents knowledge in standardized tests. However, knowing how
to do difficult things counts more than know how to do simple
things. Hence, in the reference (13) an attempt was made to
derive a measure of collective know-how, and thus the Eco-
nomic Complexity Index, or ECI, was born.

In this paper we introduce a new way of understanding
how collective know-how expands, is maintained or lost, and
we take the opportunity to clarify confusions and controversies
surrounding the Economic Complexity Index (12; 13), which
was expressed mathematically in its current form in the ref-
erence (41).

Collective learning by imitation
Societies evolve in a multidimensional space [Brummitt et al.
2018?]. They change their position in this space as they ac-
quire or lose capabilities, such that each dimension is a capa-
bility. Societies that are complex and developed will occupy
many dimensions, while less complex societies will occupy few
dimensions. We postulate that the dynamical laws in this
space arise from societies trying to copy the most complex
societies, and the most complex societies exploring new parts
of the technology space by recombinatorial processes.

We postulate that a country c compares itself with the rest
of countries, and is rewarded by how much it is similar to the
richest countries. In other words, we postulate the following
state variable that countries try to maximize when looking at
a specific country c′:

U(c, c′) =

(
1

wc

)
S(c, gc′)T (gc′), [1]

where gc′ is the group or community to which country c′ be-
longs, T (gc′) is a measure of the prestige of the community,
and S(c, gc′) is a measure of proximity, or similarity, between
country c and the community of c′. Finally, the term wc is a
measure of wealth, such that if country c is very wealthy, it
gets little utility from learning from other countries.

Equation (1) posits that country c will try to maximize its
resemblance with prestigious (i.e., wealthy) countries. This
could be done in many ways, such as adopting the same laws,
food, social norms, etc.. However, here we will consider the
point of view of production, and more specifically, the ability
to be internationally competitive at selling traded goods (42).

The utility in this case will thus be achieved by copying the
products that wealthier countries already are able to export.

In the case of producing goods, we argue that Eq. (1) can
be re-expressed as

U(c, c′) =

(
1

dc

)∑
p

Mc,pMc′,p

up
, [2]

where Mc,p = 1 is country c exports product p, and up is the
number of countries that export product p. Thus, here we are
assuming that country c is rewarded by coping from c′ rare
products.

The maximization of U(c, c′) will produce, eventually, a
single connected network of countries. However, what do the
wealthy countries do? Wealthy countries experiment and tin-
ker with their existing capabilities, and thus build on top of
what they already know how to do. This is driven by com-
binatorial possibilities. And in this way, wealthy countries
are exponentially more likely to diversify into products with-
out having to copy anybody. However, we do not model this
process as a utility maximization, as in Eq. (1), because inno-
vation is highly stochastic. Instead, the probability that coun-
try c starts to export product p must have two components.
First, given by the result of maximizing U(c, c′), a country is
likely to start to export p if that product is produced by many
other countries c′. And second, an additional term which has
to be an exponential function of the number of capabilities
the country has so far accumulated. The movement of poor
countries will be mainly driven by the first process of copying,
while for wealthy countries the movement will be driven by
the second combinatorial process.

These two processes (“imitation of the wealthy” and
“technological recombination by the wealthy”) we argue will
yield as a consequence a nested matrix of countries and prod-
ucts.

Imitation leads to a single community, combinatorics

leads to nestedness
The theoretical hypothesis presented before leads to the pre-
diction that the world should display a nested structure. This
structure is captured by the left-eigenvector a matrix which
is the projection of the technological matrix, into how much
technological overlap there is between societies.

To see this, assume we pause the process of development
that we postulated in the last section. And suppose we ask
the following question: What are the main two communities
of countries, given that they are trying to maximize Eq. (2)?
Given this question, countries get high utilities from belonging
to the same communities. Hence, the question of identifying
the communities becomes the following mathematical prob-
lem:

max
∑
c,c′

U(c, c′)δgc,gc′ . [3]

That is, we are asking the question of which are the two com-
munities to which countries belong such that at a given instant
of time there is high within-community utility. [NOT SURE
ALL THIS IS CORRECT/MAKES SENSE/IS THE RIGHT
WAY OF PUTTING THIS...].

It turns out, the solution of this maximization problem is
to pick a community using the subdominant left-eigenvector of
the square matrix whose elements are [C]c,c′ = U(c′, c). This
eigenvector has a specific name in the literature: the Economic
Complexity Index. Let us restate this in a different way. The
Economic Complexity Index (ECI) that has been used in the
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literature as a measure of a country’s collective know-how is a
vectors whose elements quantify the degree to which a country
is embedded in one of two communities. Both very positive
or very negative values mean nodes highly embedded in their
communities. In these terms, previous findings mean that one
of the communities tends to grow while the other does not.

In the next sections we clarify the definitions and prop-
erties of the ECI, and we show both numerically and em-
pirically the role of the left-eigenvectors of the matrix C to
identify communities, while the right-eigenvectors to quantify
the number of capabilities countries have.

Mathematical Definition of ECI and Properties
The calculation of the ECI starts from the matrix of coun-
tries (rows) and the products (columns) they export, M. Let
this matrix have size C × P . This is a matrix that has been
discretized so that Mc,p is 1 if the product p is exported in
country c, and 0 otherwise. From this matrix, one creates
two stochastic matrices. First, the right-stochastic (i.e., row-
stochastic or row-normalized) transition matrix of “countries
to products”,

R = diag (1/d) ·M,

and second, the left-stochastic (i.e., column-stochastic or
column-normalized) transition matrix of “products to coun-
tries”,

L = M · diag (1/u) ,

where d = M · 1 is the vector that contains the number
of products a country exports (i.e., its diversity) and where
u = MT · 1 is the vector that contains the number of coun-
tries from which the product is exported (i.e., its ubiquity).
We use the notation diag (x) to mean the matrix whose diag-
onal is the vector x and the other values are zero, and 1 to
denote a vector of 1’s.

Four important characteristics of left-stochastic matrices
are worth mentioning, as they will be useful below:1

1. A stochastic matrix for discrete markov chain can be rep-
resented as a network of nodes connected through directed
edges.

2. Multiplying on the right of the matrix is the way of prop-
agating probabilities through the network of connected
nodes.

3. Multiplying on the left of the matrix is the way of averag-
ing some node-specific property conditioned on standing on
each of the nodes and only observing the nodes to which
probabilities propagate to.

Let us construct the left-stochastic transition probability
matrix of “countries to countries” (43),

C = L ·RT .

For mathematical convenience, we will assume that the
stochastic matrix C is irreducible and aperiodic.2

Now, let li
T and ri be the ith left-eigenvector and right-

eigenvector, respectively, so that the eigenvalues are ordered
in decreasing value, λ1 ≥ λ2 ≥ · · · ≥ λC . The list of ECIs
for countries is defined as the left sub-dominant eigenvector,
ECIT ≡ l2

T :

ECIT ·C = λ2ECIT . [4]

It is easy to prove that the vector d of the diversity of
countries is orthogonal to the vector of ECIs, ECI, once
you realize that d is actually the dominant right-eigenvector
(sometimes referred to as the “perron” eigenvector, or just

simply, the stationary distribution of the discrete markov
chain defined by C). Thus, multiplying d on the right of
C, and expanding C into its components,

C · d = (L ·RT ) · d,

= (M · diag (1/u)) · (diag (1/d) ·M)T · d,

= (M · diag (1/u)) · (MT diag (1/d)) · d,

= (M · diag (1/u)) ·MT · 1,
= (M · diag (1/u)) · u,
= M · 1,
= d. [5]

Thus, d is a right-eigenvector of C associated with the eigen-
value λ1 = 1, which from the Perron-Frobenius theorem one
concludes that d is the dominant right-eigenvector. This
means, given classical results from discrete markov chains,
that the stationary distribution of the stochastic process de-
fined by C is π = d/

∑
c dc. Therefore, since left-eigenvectors

are orthogonal to right-eigenvectors, li
T · rj = δi,j (assuming

eigenvectors have norm one), we conclude that

ECIT · d = 0,

which is a result that had been noted before already in refer-
ence (44).

All these results apply to the product space matrix as well,
P = RT ·L. Namely, the sub-dominant left-eigenvector is the
list of product complexity indices, PCIs, and the dominant
right-eigenvector is proportional to the list of ubiquities.

One of the ways the economic complexity index has been
defined is by postulating that products have a complexity,
and that the complexity of countries is the average complex-
ity of the products it exports. Conversely, one defines the
complexity of the products as the average complexity of the
countries where it is exported. It is claimed that this uniquely
defines these two vectors. This is true, although any of the
left-eigenvectors of the matrices C and P have this precise
property. To show it, recall that li

T and ri are the ith left-
eigenvector and right-eigenvector of C, respectively, and as-
sume denote now qi

T and si be the ith left-eigenvector and
right-eigenvector, respectively, of P. First, note that

C · L =
(
LRT

)
· L,

= L ·
(
RTL

)
,

= L ·P. [6]

And second, start from the fact that λili
T = li

T ·C, and mul-
tiply it on the right by the matrix L, and then use Eq. (6):(

λili
T
)
· L =

(
li
T ·C

)
· L,

λi

(
li
T · L

)
= li

T · (C · L) ,

= li
T · (L ·P) ,

=
(
li
T · L

)
·P, [7]

which can be re-written as

λiqi
T = qi

T ·P. [8]

1These properties also hold for right-stochastic matrices, by simply swapping the words “right” and
“left”.
2When C is constructed using real data, it is irreducible since all countries produce at least one
product that some other country also produces, and it is aperiodic since, by construction, it has
self-loops.
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It is easy to see from Equations (7) and (8) that if li
T is a

left-eigenvector of C, then the vector li
T · L is the ith left-

eigenvector of P, such that qi
T = li

T · L. Since multiplying
on the left of a left-stochastic matrix takes averages, we see
that the left-eigenvectors of the product space are the aver-
ages of the left-eigenvectors of the country space. In particu-
lar, for the complexity indices. Furthermore, we obtain that
the eigenvalues of both matrices are the same.3 This result,
obviously, applies to the sub-dominant eigenvectors of both
matrices, which are the complexity indices. But the point
is that if we use the definition of complexities based on the
averages, one has to choose among min{C,P} choices.

Now, the values of ECI have been shown to be positively
associated with income levels and income growth of countries
(13). However, a clear and direct interpretation of the physi-
cal meaning of ECI, as the sub-dominant left-eigenvector, and
its association with a measure of collective know-how, and its
link to economic growth, has been lacking. The reason for
this confusion is born out, first, from its flawed interpretation
as a linear measure to rank countries, and second, as that in-
terpretation that states that it is that quantity which is the
average property of products.

In the next section, we clarify these issues, and we show
why it is that ECI is, in fact, a good indicator of the size of
the collective know-how of countries. The argument is, how-
ever, both obvious and non-trivial. Obvious precisely because
of its interpretation as the sub-dominant left-eigenvector, but
non-trivial, from the ultimate significance about the emphasis

it gives to the underlying process of economic development as
a process of collective learning.

ECI answers the question “What would be the two

main communities of countries?”
Given the literal interpretation that ECI has received as a
physical measure of know-how, and its success predicting eco-
nomic growth, it would seem hard to demonstrate that ECI is
a clustering index. However, we can use a trick in order to dis-
entangle the economic aspects of the ECI from its community-
related properties. The goal here is to try to use ECI to reveal
geographical communities, which is accomplished when we add
a geographical dimension to the matrix M: the geographical
region of destination where the exporter is exporting a prod-
uct, i.e, the importer. Hence, we will now have a tensor,
Mc,i,p, where c is the index of the exporter country, i the
importer, and p the product traded.

The following figure (Fig. 2) shows the matrix of exporters
as rows and importer-product pairs as columns. It also dis-
plays a triangular pattern. To it, we compute the eigenvalues
to have an indication of how many clusters there are. Fi-
nally, we plot the 3-dimensional left-eigenspace (top-row of
figures in the right 6-panel plot), and the 3-dimensional right-
eigenspace. A clear clustering pattern emerges, which will
become more clear in the numerical exercises that will fol-
low.

Figure 2: Real data from the matrix of exporters (rows) vs importer-products (columns). The density of eigenvalues provides a sense of the number of
communities of exporters by counting the number of large eigenvalues. The density of the distribution of values of ECI is a further indication of the number
of communities. However, the communities become clear on the left-eigenspace (each dot is an exporter), which is shown on the three row-panels. We color
the five continents of the exporters, supporting the idea that exporters belong to the same geographical communities. The bottom row of 3 panels shows the
right-eigenspace, which we hypothesize provides a measure of the underlying capabilities of exporters.

3Since M is typically not square, and there are more products than countries, P > C, this results
also indicates that the matrix P must have some degenerate eigenvalues, which in turn explains
why in the calculation of the PCIs one observes many products with identical values.Footline Author PNAS Issue Date Volume Issue Number 5



Left is for communities, right for capabilities [IS

THERE A GAME OF WORDS HERE?]
The ECI is an index that separates the set of countries in
two communities, a core and a periphery. Mathematically, we
show that it maximizes a community discovery task. Numeri-
cally, we create a synthetic world of several communities, and
show that ECI is the answer to the question which of two
communities does each country belong to? Finally, we will
show that the role of the ECI becomes evident when we use
the flattened export vs. product-importer matrix.

The takeaway from this section is more general, though.
We show both left-eigenvectors and right-eigenvectors contain
the information about the community structure of the net-
work. However, left-eigenvectors are better about the statisti-
cal identification of communities, while the right-eigenvectors
are better about measuring capabilities. These two realms
are related since the extent to which a country is embedded
in a community is itself a measure of the number of capabili-
ties it has. The ultimate reason is Anna Karenina’s Principle.
Richly diversified countries tend to be all alike, while poorly
diversified countries are poorly diversified in their own way.

Numerical demonstration. Recalling that C is a left-stochastic
matrix, there are several known results about its spectral
properties and their relation to community structure (45; 46).

First, if the nodes of the network are organized in well-
defined k clusters, then there are k − 1 relatively large, non-
trivial, eigenvalues, in addition to the dominant eigenvalue
with value equal to 1 (47). Thus, a heuristic that can be used
to infer the number of communities in a network is to count

the number of eigenvalues larger than, say, 0.1, in the spec-
trum of the stochastic matrix. Second, the eigenvectors (both
left- and right-eigenvectors) associated with those k − 1 non-
trivial eigenvalues reveal the structure of the clusters. Hence,
if the clusters are well-defined, carrying out a k-means clus-
tering on the matrix EC×k−1 where the columns are the k−1
left-eigenvectors of C would identify the k clusters.

In our case, the left-eigenvectors of C can be used to dis-
cover the communities of countries, where the communities
are the based on how similar are the export baskets of coun-
tries. But as we will show, both left and right-eigenvectors
can carry out this function.

As a comparison, we create three M matrices. The first,
we created by putting Mc,p = 1 with a probability of 0.6 if c
and p belong to the same community, and with probability 0.1
if they belong to different ones. The second way is following
(48; 49), who hypothesize the interaction between two matri-
ces, C and P determines M. These underlying matrices are
also binary matrices, which can be thought of as the matrix
of countries and the capabilities they have on the one hand,
and the matrix of products and the capabilities they require
to be produced on the other, such that M = C � P, where
the operator � is a production function operator, which we
choose as the Leontief (i.e., a country produces a product if
it has all the capabilities required to produce it). Finally, the
third way to construct M is from real data. We choose the
year 2015, 224 countries and 773 products (SITC4 codes).

Figure 3 shows the results from the matrix filled uniformly,
with five communities. Figure 4 shows the results from the
matrix created based on an underlying structure of capabil-
ities, with also five communities. Figure 5 show the results
from real data.

Figure 3: Example of a matrix connecting countries with products with a uniform probability. The within-community probability was set at 0.6 and the
between-community probability at 0.1.
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Figure 4: Example of a matrix connecting countries with products as it results from the interaction between the matrix of countries and capabilities, with
the matrix of products and the capabilities required. Within each community we model a nested pattern in which some countries have many capabilities and
others only a few. We also include the possibility in which some products can be produced countries regardless of the community to which they belong.

Figure 5: The same exercise as in Figures 1 and 2, but with real data from 2015 using only exporters and their products (see Fig. 2 for exporters vs.
importer-products). As can be seen, communities are less clear in this representation.
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As can be seen from Fig. 1 and Fig. 2, the left and right
eigenvectors of the matrix of the country space is helpful in
identifying the communities. The

Mathematical demonstration. Let us begin by showing that
ECI is a solution to the following optimization problem:

max
∑
c′

1

dc′

∑
c,p

(
1(c∧c′ export p)

up

)
1(c∧c′ same community) [9]

The free parameters of the maximization are the assignments
of countries to one of two communities. Let us list the prop-
erties of this quantity:

• It is higher if countries c and c′ export products of low
ubiquity (i.e., products that are rare, or difficult to pro-
duce).

• It is higher if country c′ exports few products.
• It is higher if countries c and c′ export the same products.
• It is higher if countries c and c′ belong to the same com-

munity.

Since the only moving part in the quantity is to which of
the communities countries belong to, the algorithm will put
countries that export the same products together. Further-
more, the algorithm will weigh much more when countries
export rare, and presumably difficult to make, products. Fi-
nally, each country contributes to the quantity, and since you
don’t want diverse countries to dominate the sum, you di-
vide by each country’s diversity. [THE ARGUMENT THAT
i’D LIKE TO DEVELOP FURTHER IS THAT WHAT THE
PREVIOUS PARAGRAPH IS DESCRIBING NOT ONLY
THE DEFINITION OF THE ECI; iT IS THE STATE VARI-
ABLE THAT AN ECONOMY IS TRYING TO MAXIMIZE
IN THE REAL WORLD. THAT IS, COUNTRIES ARE
NOT TRYING TO MAXIMIZE gdp, THEY’RE REALLY
(BUT UNCONSCIOUSLY AND IMPLICITLY) TRYING TO
MAXIMIZE eci. hENCE, AN ECONOMY IS TRYING TO
BELONG TO A COMMUNITY. THIS SHOULD SHELD
LIGHT TO DIFFERENT ASPECTS OF THE DIVERSIFI-
CATION PROCESS, AND THUS, IT SHOULD REVEAL
THE “DENSITY REGRESSIONS”.]

Let us define the vector s, such that sc = −1 if the coun-
try c belongs to community 1, and sc = 1 if c belongs to
community 2. Recalling the definition of the elements Mc,p

of the matrix M, the quantity to maximize in Eq. (9) can be
written as

Q =
∑
c′,c,p

(
1(c∧c′ export p)

up

1

dc′

)
1(c∧c′ same community),

=
∑
c′,c,p

(
Mc,pMc′,p

updc′

)(
scsc′ + 1

2

)
,

∝
∑
c′,c,p

sc

(
Mc,pMc′,p

updc′

)
sc′ ,

= sT
(
M · diag (1/u)) · (MT diag (1/d)

)
s,

= sTCs. [10]

Therefore, the problem is how to choose s so as to maximize
the expression in Equation (10). The strategy for solving this
problem is the so-called “spectral approach” (46; 50), express-
ing the vector sT as a linear combination of the eigenvectors
of C. Directly replacing this into Eq. (10) will not be useful

because the eigenvectors of a non-symmetric matrix are not
orthogonal among themselves (only to the other side eigen-
vectors counterparts). So let us express s using both the left
and right-eigenvectors,

sT =
∑
i

aili
T ,

s =
∑
i

biri. [11]

Replacing these expressions in Eq. (10), we get

Q =
∑
i

λiaibi. [12]

As has been shown in a number of different instances (51; 52;
50), this quantity can be maximized by choosing the s to be
parallel to eigenvectors with the largest eigenvalues, subject to
the constraint that sT · s = C. In other words, since the max-
imization problem was originally set as to find the two main
communities, one must choose the subdominant eigenvalue,
and therefore the corresponding eigenvectors.

Improvements on the Theory of Economic Complexity,

and the significance of belonging to a community
The Theory of Economic Complexity introduced two main
ideas to understand economic development. On the one hand,
it proposed that economic development is growth at the ex-
tensive margin, or, in less technical terms, economic devel-
opment is a process of diversification. On the other hand,
it introduced the notion that economic development is a his-
torical process structured by technological constraints, in the
sense that the extensive margin can be expanded following
only a limited number of technological paths and, therefore,
its growth depends on previous contingent events that move
countries in the right direction.

These conceptual innovations were accompanied by two
analytical tools: the technological space that gives structure
to the historical process of development, and the quantifica-
tion of how much a society knows as a collective through an
index of economic complexity. Here we show how our under-
standing of the physical and mathematical meaning of both
innovations allow us to improve both notions. We demon-
strate this by showing a superior capacity to predict growth.

Hypothesis 1: After identifying the k communities of coun-
tries, the k-th dimensional left-eigenspace in which coun-
tries can be located (the ECI is one of the dimensions) is
useful to predict the direction of diversification (i.e., which
products will appear next). A better algorithm to calculate
the embeddedness of a country in a community may thus
predict the appearance of specific products better than be-
fore.

Hypothesis 2: After identifying the k communities of coun-
tries, the k-th dimensional right-eigenspace in which coun-
tries can be located (the vector of diversities is one of the
dimensions) is a measure of the number of capabilities, and
is thus useful to predict levels of wealth. In particular, it is
the “distance to the center of the space” which is propor-
tional to the number of underlying capabilities of countries.
of countries.

Hypothesis 3: Both left- and right-eigenspaces should pro-
vide better ways of predicting GDP growth (hence, have a
horse race with other alternatives).

The discovery presented in Section that ECI is a com-
munity discovery index is very important piece to understand

8 www.pnas.org — — Footline Author



the process of economic development. In concise terms, it sug- gests that countries accumulate capabilities by “looking” like
one another.

Figure 6: The real complexities is the number of capabilities that countries have in their Cca matrix. The model we have used is Hausmann & Hidalgo (2011),
but we have included 6 communities. The euclidean distance to the center of the right-eigenspace is highly correlated with the real number of capabilities

We test the correlation between the real number of ca-
pabilities with other possible measures, including the original

ECI, the Fitness of Pietronero et al., diversity, among others
(see Fig. 7).
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Figure 7: Correlations scattergrams between pairs of variables that may estimate the underlying number of capabilities. The best correlation is with the
“distance to the center” of the right-eigenspace (see Fig. 6).

Discussion
The results of this paper can be concisely summarized as fol-
lows: economic development is first and foremost a process of
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global imitation with recombinatorial exploration. Imitation
gives rise to a single connected network of countries, and both
imitation and recombination gives rise to the nested structure
in which richer countries are more diverse and build on what
less diverse countries know-how to do. The main significance
of this is that humanity as a whole is exploring a single branch
of the technological tree.

Methodologically, our results imply that identifying the
community in the network to which an economy belongs pro-
vides a wealth of information about the current and future
productive capabilities of the economy.

Conclusion
The field of economics has improved of our understanding
of markets. In markets, the two organizing concepts are
price and quantity, and the main organizing mechanism is the
equalization of supply and demand. The Theory of Economic
Complexity complements our understanding of economic sys-
tems by emphasizing the role of collective know-how. The
adaptability, welfare, and robustness of an economy all are
determined by the size of the collective know-how of a soci-
ety. While the traditional market-centered approach to eco-
nomics has developed sophisticated tools to track the flows of
value and money, TEC is in the process of developing better
tools and formalisms to track the expansion, maintenance, and
transference, of collective know-how. In this paper we have
build on previous ideas to reinforce the claim that networks
are behind the processes of economic development: networks
highlight collective-level properties like communities. And the
main questions are thus: how do economic communities are
formed? Why do nodes in the same community grow to-
gether? Why do we see convergence in income when nodes
belong to the same community (Coscia and Hausmann!)(53;
54)?
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