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Abstract

How much more creative or inventive can a city be relative to other cities? This question

has not been properly framed in previous works due to a lack of knowledge about the probability

distribution that describes the levels of inventive and creative activities in cities. It is an impor-

tant question since differentials in urban creative and inventive activities greatly explain regional

differences in economic development. The reason to use probability distributions is because they

characterize the full variability of outcomes, and thus, it is the way to quantify the likelihood of

observing each level. For US Metropolitan and Micropolitan Statistical Areas, we report here for

the first time that lognormal probability distributions describe the counts of inventors and creative

employment for urban areas with similar population sizes, and that the unconditioned distribution

of inventors and creatives is Pareto with a right-tail exponential cutoff. Quantifying these statistical

distributions, moreover, suggests some general mechanisms driving the accumulation of inventive

and creative activities in cities, and how these mechanisms change with city population size.
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1. INTRODUCTION

It has become a truism that the generation and exchange of knowledge have become the main

drivers of economic development through its effects on productivity improvements and technological

change (Romer, 1986, 1990; Lucas Jr., 1988; Barro and Sala-i Martin, 2003; Weil, 2012). The princi-

pal agents responsible for the generation, recombination and transmission of knowledge, the bearers of

“human capital”, are, of course, individuals (Lucas Jr., 1988). There is a virtuous cycle between in-

creasing the number of individuals engaged in the generation of ideas and economic growth (Lucas Jr.,

1988; Kremer, 1993; Jones, 1995, 2002; Jones and Romer, 2010). The role of individuals as carriers of

knowledge is also emphasized by the research highlighting the economic importance of “know-how” and

“routines”: the tacit knowledge, competencies, skills and experiences which make it possible to integrate

technical knowledge and perform specific tasks (Nelson and Winter, 1982; Dosi et al., 1994; Hausmann

and Rodrik, 2003; Hausmann and Hidalgo, 2011). Consequently, and in seeking to explain differentiated

economic performance across urban areas, much research effort has been devoted to identifying the fac-

tors which help determine the concentration of highly-educated, skilled, technically competent, creative

and inventive individuals in cities (Piore and Sabel, 1984; Storper, 1997; Acs, 2002; Bettencourt et al.,

2007; Andersson et al., 2007; Lobo and Strumsky, 2008; Florida et al., 2008; Bacolod et al., 2009; Gabe

and Abel, 2012; Abel et al., 2012; Lobo et al., 2014).

Yet, despite the great analytical efforts exerted trying to understand the agglomeration of human

capital—which indeed exhibits great spatial variability—and how we have learned as to what matters

and what does not, it is surprising how little we still actually know (Agrawal, 2003; Cooke et al., 2011;

Shearmur, 2012). What if the search for a set of prime urban factors (or socioeconomic and cultural

features) responsible for the concentration of human capital, invention and innovation is somewhat

misguided (Iammarino, 2011)? What if it is unlikely for any one set of location-specific characteristics

to uniquely generate an urban environment conducive to innovation? And what if, despite substantial

evidence that different factors are responsible for the accumulation of human capital in different cities

and at different times, the manner in which these processes interact is the same? In such a case an

adequate understanding of urban innovation would have to become more historical and evolutionary,

and the expectations for the success of policy-intervention (which usually aim at increasing the supply

of a few “key” inputs) should become somewhat tempered.

Building on the discussion in Iammarino (2011), who emphasizes the variety of sources and paths

to innovation, we propose a different approach to the study of agglomeration of innovative capabilities

in urban areas. We believe that in order to describe the type of processes which generated the observed

agglomerations, we need to take seriously the stochastic nature of the metrics typically used as indicators

of urban innovative capabilities (or outputs). Identifying the distribution governing a random variable
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is a first step in this direction, and is the focus of the present paper. Crucially, though, characterizing a

statistical distribution accomplishes more than just specifying the range of possible values the variable

can assume; it also informs us about the nature of the process that generated the observed data (Limpert

et al., 2001; Frank, 2009; Frank and Smith, 2011; Frank, 2014; Sornette, 2012). Suppose we are given

the full set of factors that determine the levels of inventors (or any other proxy measure for generators

of ideas) across urban areas. But suppose further that we are not, however, given the functional form

specifying how these factors come together so as to determine the levels. How could we go about revealing

the way they interact? The number of functional forms that can combine all the relevant factors, in

different ways, is so large that empirically determining which of the possible functional forms has the

best fit is unfeasible. Characterizing the statistical distribution of innovative individuals, however, can

tell us (approximately) about they way in which the underlying factors interact. In fact, a statistical

distribution has information about how factors interact even if we are not able to fully stipulate the

complete set of relevant factors to begin with.

Standard models of human capital accumulation in urban areas (e.g., Rauch, 1993, Glaeser, 1999,

Moretti, 2004, Andersson et al., 2007) are largely silent on questions about statistical distributions

because they are developed assuming equilibrium in the labor markets. As a consequence, these type

of models do not predict any particular probability distribution for how many inventive (or creative or

highly skilled) individual we should expect to observe in urban areas. That is, these equilibrium models

do not tell us how likely it is to observe cities that deviate from the equilibrium predictions. Another

conceptual barrier for the study of the statistical variation is the excessive focus on averages. On the

one hand, models for human capital agglomeration assume equilibrium levels are what we observe on

average. And on the other hand, the empirical investigations themselves, through regression analysis,

often only estimate average associations (Glaeser and Saiz, 2004; Berry and Glaeser, 2005; Florida et al.,

2008; Glaeser, 2011; Miguélez and Moreno, 2013; Davis and Dingel, 2014). Supplementing multivariate

regressions with explicit identification of the underlying probability distributions is only an additional

step, yet key, if we want to have a better understanding of what is possible, and what can be changed,

when implementing public policies.

In brief, our discussion contributes to the empirical literature on urban innovation by quantifying

the probability distribution governing the accumulation of human capital (here proxied by “creative”

occupations and authors of patent applications). We show that the urban variability in innovative

individuals, once population size is controlled for, is well described by a lognormal distribution.1 Our

results thus suggest (i) that there is an underlying multiplicative stochastic process affecting the levels

of urban innovative activity, (ii) that the number of determining factors involved is large, and (iii) that

1A random variable which is lognormally distributed is the end product of a large number of factors interacting with

each other multiplicatively. That is to say, factors strongly interacting with each other (see Limpert and Stahel, 2011).
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there exist constraints on the variance of the logarithmic levels of inventive and creative individuals.

We can infer this because we observe the same distribution (i.e., lognormals) across different scales, and

for two different measures of human capital (i.e., creatives and inventors).

Although the probabilistic language in which our results are presented is novel, the conclusions from

our results are compatible with previous studies in that we show that the differences between cities

are structural (i.e., multiplicative) (Muneepeerakul et al., 2013; Strumsky and Thill, 2013) and lead to

divergences between them (Berry and Glaeser, 2005; Lobo et al., 2014). We believe our study about

these statistical distributions opens new avenues of research that give more attention to the structure

of how factors and people interact in cities, as opposed to the identification of specific factors. This, we

also believe, will advance our understanding of how innovation in urban areas operates.

2. Data: Measuring Urban Innovativeness

Our spatial units of analysis are 364 Metropolitan Statistical Areas (MSAs) and 574 Micropolitan

Statistical Areas, which together comprise the urban system in the United States. (For the rest of the

discussion we will use the term “urban area” and “city” interchangeably.) Both MSAs and Micropolitan

Areas consist of core county or counties, with a city at its core plus adjacent counties having a high

degree of social and economic integration with the core counties as measured through commuting ties.

In the case of MSAs the urban core has a population of 50,000 or more while for Micropolitan Areas

the core urban population ranges from 10,000 to 50,000 inhabitants. MSAs and Micropolitan Areas

are in effect unified labor markets and spatial entities with high levels of socioeconomic integration.

Here we use the 2010 definitions for MSAs and Micropolitan Areas. We apply the same definition to

construct the urban areas in the years 2008 and 2009 for inventors (more on this below). Detailed

information on how Metropolitan and Micropolitan areas are defined can be found in http://www.

census.gov/population/metro/. For each urban area we use the population size estimates provided

by the U.S. Census Bureau (see https://www.census.gov/popest/data/metro/totals/2009/ and

http://www.census.gov/popest/data/metro/totals/2013/CBSA-EST2013-alldata.html).

Ever since the work of Mincer (1958) and Becker (1964) the standard measure of human capital

has been simply educational attainment (usually the share of a population with a bachelors degree and

above). The difficulties of equating human capital with educational attainment, stemming principally

from differences in the quality of the education received by individuals and the differences in the economic

relevance among types of schooling, have been amply discussed (see, for example, Mulligan and Sala-i

Martin, 2000 and Bode and Villar (2014) [Creativity, education, or what? On the measurement of

regional human capital]). Furthermore, educational attainment (or years of schooling) does not fully

capture an individuals accumulated experience, nor their creativity, innovativeness, and entrepreneurial

capabilities. One influential line of research (Florida, 2002) suggests an alternative measure for human
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capital, based on occupations, specifically a set of knowledge occupations that make up the creative class.

A crucial difference between educational attainment and occupation-based measurements of human

capital is that educational attainment is a measure of the supply of talent, while creative employment

measures the demand for it: in order for an individual to perform a creative occupation, someone

needs to be willing to pay for the persons talent. The demand for talent is not a necessary condition

for education-based measures of human capital. While some would claim that education is a pre-

requisite for future creativity, studies like Smith, Carlsson and Danielsson (1984) show that creativity,

education, and skill are all distinct but interrelated determinants of individuals productivity. In this

sense, creativity is both a complement and substitute to education and skill. Florida (2002) separates

education from creativity, defining education as what you have studied for and creativity as what you

do in practice. This does not replace education-based measures of human capital in studies of regional

and urban economic development, but should be seen as a complementary measure (see, e.g, Florida,

Mellander and Stolarick 2008; Lobo, Mellander, Stolarick and Strumsky, 2014).

A different measure of human capital is implicit in the huge research attention bestowed on patent-

ing. One type of intellectual activity with important consequences for technological and economic

development is inventionthe creation of new artifacts, methods, processes and materialsand one type of

invention, that which results in the granting of a patent, has become a widely used metric for studying

the knowledge economy (see, for example, Mansfield, 1986; Griliches, 1990; Jaffe et al., 1993; Acs et

al., 2002; Marx et al., 2009). The granting of a patent heralds the arrival of a new process, method,

machine, manufacture of composition of matter (the categories of inventions eligible for the protection

of a U.S. patent). A salient characteristic of patenting activity in the United States is that it has been

an urban phenomenon (Ullman, 1958; Sokoloff, 1988), and remains so today with approximately 93%

of all patents granted by the U.S. Patent Office authored by inventors residing in metropolitan areas.

Patent analysis has therefore become a well-established framework for investigating locational and spa-

tial aspects of technological advance with much effort having been devoted elucidating the determinants

of urban patenting productivity (see, for example, Acs et al., 2002; Bettencourt et al., 2007; Carlino et

al., 2007; Lobo and Strumsky, 2008). Patents are generated by inventorsto study locationally-specific

invention (proxied by patents) is therefore to study the agglomeration of one type of skilled and creative

individuals, namely inventors. And through the information avialable through granted patents, patent

authors can be precisly allocated to Metropolitan and Micropolitan Areas.

To construct the counts of creative occupations employment, as defined in (Florida, 2004, Appx. A),

we use 2010 employment data from the U.S. Department of Labor’s Occupational Employment Statistics

(OES) that are available at the metropolitan area level, together with the 5-year estimates of the

data from the U.S. Census American Community Survey (ACS 06-10) available at the county level,

which we aggregate into micropolitan areas. Data for inventors were obtained from coding inventor’s
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addresses obtained from the U.S. Patent and Trademark Office (USPTO).2 Despite all the publicly

available information about each patent, no unique identifiers are used for inventors. However, using a

combination of conditional matching algorithms, it is possible to identify patents’ inventors, and locate

them geographically. Details about the algorithm used can be found in Marx et al. (2009).

3. Estimations of Probability Functions

Strictly speaking, there is an infinite number of different stochastic processes that can generate any

particular probability distribution describing our random variable Y . Thus, observing a particular sta-

tistical distribution does not immediately and uniquely determine the underlying generative mechanism.

However, one can make reasonable inferences with a proper understanding of the system under study. In

the context of cities, the quantities we wish to understand here presumably arise from the aggregation

of many processes and many factors. Hence, some limit theorems may apply, and we may observe some

of the common limiting distributions.

In our study of urban creative and inventive activities, we will broadly distinguish between additive

and multiplicative stochastic processes. The former refers to the situation when factors are in general

acting separately to determine the value of the variable Y , a situation which can be mathematically

expressed as Y =
∑

i Fi, where Fi is the random effect of factor i. If this is the case, we expect the

random variable Y to be normally distributed by invoking the Central Limit Theorem (CLT). In contrast,

if factors are acting interactively, which can be represented as Y =
∏

i Fi, we expect the outcome Y

to be lognormally distributed, which can be understood by using the CLT once we apply logarithms

to both sides. The standard assumptions behind CLT are that Fi must be independent and identically

distributed, each have a finite variance, and the number of terms i must be very large. However, normal

and lognormal distributions can still arise in more general situations, given that in these processes of

aggregation different forms of information are dissipated, maintained, or amplified (Jaynes, 2003; Frank,

2009; Frank and Smith, 2011). It turns out that whereas additive processes dissipate information about

the variance of the individual factors Fi, multiplicative processes amplify them. This, we will show, will

be a way to understand why cities diverge from each other in their creative and inventive activities as

they grow in population size.

Our analytical attention is focused on the full statistical distributions of the counts of creative

employment and inventors. We quantify the distributions in two ways. First, we characterize the

distribution of total counts across all urban areas by estimating the marginal distribution P (Y ), where Y

will refer either to counts of creative employment or to counts of inventors. And second, we characterize

the conditional probability distribution of the counts Y given population size, that is we estimate we

2http://www.uspto.gov/.
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estimate P (Y |X), where X is another urban attribute. [Andres: a bit here on the reason/logic behind

doing this.] Specifically we condition against urban population size, N , so the conditional relationship

becomes P (Y |N). The decision to condition population size recognizes the importance of urban scale

as both a consequence and determinant of socioeconomic dynamics (some references here – Jose will

provide). This approach has already been pursued in similar contexts recently (Bettencourt et al., 2010;

Gomez-Lievano et al., 2012; Alves et al., 2013a,b, 2014; Mantovani et al., 2013), and we apply it here

to the study of the sources of creativity and invention.

A set of cities and their associated indicators can be viewed as a statistical ensemble of realizations

(yi, ni) with i = 1, . . . ,m, of the random variables Y and N . We stress again that Y represents

counts of either creative workers or inventors, while N represents population size. Since both measures

represented by Y count people, they are logically bounded by the population size of the city, i.e.,

Y ≤ N . It is a trivial constraint since both creatives and inventors are a subset of the total population,

but it underscores, again, the importance of taking into account urban population size explicitly in

our analysis. We want to specify the probability of observing Y = y creatives, or inventors, in a city

conditional on an urban population of size N = n; that is, we want to estimate P (Y = y|N = n),

in which the random variables Y and N take values on the non-negative integers. Since we want to

understand how probable or improbable a particular level of innovative activity is in an urban area,

given a certain number of people living and working in it, a necessary component of the analysis is to

also quantify the probability across all scales P (Y = y).

For practicality, we will relax the condition that Y and N must take integer values and instead

consider them to be continuous. Since our counting of inventors in each year depends upon the existence

of patent applications, our numbers are subject to interannual fluctuations. We will use a 3-year average,

from 2008 to 2010, to reduce this variation. In the case of creative employment, more than 99 percent

of the count numbers are larger than 1, 000 and span a range of more than three orders of magnitude, so

the use of a continuous approximation is also valid. This way, the granularity of the data becomes less

evident since P (Y = y)→ 0. The approximation is even more valid for population size. Hence, we will

be estimating probability density functions (pdfs) which we will denote by pY |N(y | n ; θn) and pY (y),

as opposed to probability mass functions. We write θn to make explicit the fact that the parameters of

the conditional pdf are in principle functions of population size n.

All parameters are estimated using Maximum Likelihood Estimation (MLE). To estimate pY (y) we

propose a parametric functional form (see Equation (6) in the Results section), and we implement the

methodology presented in Clauset et al. (2009) to fit it to the data. The shape of pY (n) is hard to

determine exactly, especially in the tail. We propose a function that is simple, but which provides

an accurate characterization of how are the creative and inventive activities distributed across all the

different size scales.
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To estimate pY |N(y | n ; θn) we first use a logarithmic binning across population sizes. That is,

we estimate P (Y |nj ≤ N < nj+1), such that nj+1 = anj = aj+1nmin, where n0 = nmin, and a > 1

determines the bin sizes. We denote the j-th bin as Bj = [nj, nj+1).

The conditional distributions describe the statistical variation of our variables Y for cities of compa-

rable population sizes. To compare the conditional distributions across sizes we define the transformed

variables

(1) z =
ln
(
y|Bj
)
− µ̂j

σ̂j
,

where, for each set of cities with populations within bin Bj, we have calculated the (unbiased) sample

mean µ̂j and standard deviation σ̂j of the logarithm of the corresponding counts of the variable Y in

each bin, denoted by y|Bj :

(2) µ̂j =
1

|Bj|
∑
nj∈Bj

ln (yj),

and

(3) σ̂j =

√
1

|Bj| − 1

∑
nj∈Bj

(ln (yj)− µ̂j)2.

In Equations (2) and (3), |Bj| denotes the number of observed cities in bin Bj.

The reason to perform this bin-by-bin analysis is that we do not want to presuppose any relationship

between Y and N . We are assuming, however, that the function form of the conditional distribution

stays constant, which is why we standardize in Eq. (1).

We can visualize the conditional probability density function pY |N(y | n) by plotting histograms of

the data, as is customary.

For pY (y), however, this visualization method becomes less useful given that the tails of the dis-

tributions are heavy and too noisy, i.e., the tails have very few cities with very large populations. In

situations like this, distributions are best visualized using logarithmic scales in both axes, and plot-

ting instead the cumulative distribution, or the complementary cumulative (also “countercumulative”),

which is more robust to the noise in the tails. Thus, we will plot the marginal probability pY (y) through

its complementary cumulative function defined as

(4) P (Y ≥ y) =

∫ ∞
y

pY (y′)dy′.

4. Results

We start our analysis by showing the general relationship between the urban indicators y and n in

a scatter plot (Figure 1). Both axes are shown in logarithmic scales. Two observations about this plot
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FIGURE 1: Population size scaling of the counts of creative employment C, and inventors I, in US metro and micropolitan areas. In both

plots, each point represents a different metro or micro area. The data on creative employment correspond to the year 2010, and for inventors

it is the average number over the years 2008, 2009, and 2010. The fitted model is a linear regression on the logarithms of both variables (solid

green line). The slope of the regression, thus, is the estimated exponent of the relation Y ∝ Nβ , where N is population size and Y is C or

I. The deviations from this average behavior for the creative employment counts (A) show less fluctuations than for inventors (B). These

fluctuations are described by the same distribution and suggest the type of process underlying them (see text).

should be noticed: (i) There is broad variability across all the values of y (for both creative employment

on the left and inventors on the right), mainly driven by the broad variability in population sizes. This

can be best observed for creative employment, for which the relationship has R2 ≈ 0.97. And (ii), there

is broad variability in y even for cities of the same population size, which is best observed for inventor

counts where differences sometimes span more than two orders of magnitude.

In Fig. 1, the green solid line is the linear OLS regression corresponding to the hypothesis that the

expected value of Y is given by3

(5) E(Y |N) = Y0N
β,

where Y0 and β are coefficients whose estimates are shown in Fig. 1.

The observation in Fig. 1 that ŷi ∝ nβ̂i , where β̂ is the estimate of the exponent of this power

relation (5), is itself interesting. The fact that β > 1 means that larger urban areas are skill abundant.

From a public policy perspective, one may be inclined to propose efforts aimed at increasing creative

and inventive activities in cities by increasing their population size. However, as we show in the next

section, the estimation of pY (y) shows very clearly that the concentration of creative and inventive

3A theoretical justification for why average levels of Y are characterized by a power function of N , with exponents

clustered around β ≈ 1.16, has recently been given as arising from the spatial mixing of agents, with limited resources

and subject to transportation costs, interacting through physical infrastructure (Bettencourt, 2013).
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FIGURE 2: Marginal distributions of creatives C and inventors I are well fit by a power-law with an exponential cutoff. We plot the empirical

complementary cumulative distribution (blue circles) with the fit (red solid line) corresponding to the function in Eq. (6) using maximum

likelihood. The estimated exponents are, respectively from left to right, τ̂C = 1.623 and τ̂I = 1.4603. The estimates of the characteristic

scale of the exponential tail are γ̂C = 1 816 036.2 and γ̂I = 29 381.6. The vertical dashed gray lines are the minimum values for which the

distributions hold and are ŷminC = 3491 and ŷmin I = 30, respectively.

activities becomes in fact increasingly constrained for larger cities.

Figure 2 shows the empirical complementary cumulative distribution of creative employment and

inventors in a log-log plot. Qualitatively, the distributions display a scale-free regime modulated by a

sharper decay in probability at large population sizes. A simple characterization of this distribution is

a power-law with an exponential cutoff:

(6) pY (y; τ, γ, ymin) = C
e−y/γ

yτ
, y ≥ ymin,

where C ≡ γτ−1

Γ(1−τ,ymin/γ)
is a constant of normalization, τ > 0 is the exponent of the power-law, γ is

the characteristic scale above which the exponential decay becomes strong, and Γ(z, a) is the upper

incomplete gamma function4

(7) Γ(z, a) =

∫ ∞
a

tz−1e−tdt.

Since our data is left-censored we do not fit the lower tail of the distribution. Instead, we consider the

values y ≥ ymin above a minimum value for which this model holds.

The rationale behind Equation (6) is phenomenological and comes from two sources. First, power-

laws (also referred as Pareto or Zipf distributions5) in urban sizes have been often assumed as the rule,

being the result of processes by which bigger cities attract more people giving rise to “rich-gets-richer”

4The lower and upper incomplete gamma functions, γ(z, a) and Γ(z, a) respectively, are such that γ(z, a) + Γ(z, a) =

Γ(z).
5A Pareto distribution is a power-law with a density p(x) ∝ x−α, where the exponent α is larger or equal than two.

The case when τ = 2 is special because all its moments are infinite, and is called Zipf’s law.
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effects that usually lead to such heavy-tailed distributions (Zipf, 1949; Simon, 1955, 1968; Gabaix,

1999; Soo, 2005). Economic foundations of the power-law distribution of population sizes usually rely

in Gibrat’s Law, whereby the growth of city populations is independent of their size (the original

explanation comes from Gabaix, 1999). And second, the exponential part of the distribution comes

from the fact that real systems, such as cities, are finite and therefore size and growth have ultimate

limits. In physics, such effects are called “finite-size” effects, and are often characterized by such

exponential decays (Newman, 2005). These finite-size effects constrain the systematic accumulation of

creative and inventive activities for the largest cities, at least for the US system of urban areas.

Based on our proposed functional form, we distinguish distinct regimes in this distribution from

comparison to a straight line (in the log-log plot). A straight line in this type of plot would be the

signature of a Pareto distribution, and it is indicative of a lack of characteristic scales6.

According to Figure 2, however, only the middle range of US city sizes displays this scale-free

phenomenon. Cities such as A, B, and C belong to this collection of cities. But deviations from the

Pareto law in the right tail suggest that scale becomes relevant for large populations. For creatives, this

scale is estimated to be γ̂C = 1 816 036.2, and for inventors γ̂I = 29 381.6.

The specification given in Equation (6), and its superior fit over other specifications (see Appendix

for details), suggest that there is in fact a scale above which the accumulation of creative employment

and inventors, driven by population growth, no longer follows the proportionate growth (Gibrat’s Law)

implied by the Pareto behavior of the medium sized cities. This conclusion is in contrast with the recent

interpretation reported by Berry and Okulicz-Kozaryn (2012), in which the authors claim that a cutoff

would be due to a geographic underspecification of these regions.

Figure 1 shows that the average of creative employment and inventors counts varies regularly as a

power of population size, characterized by Equation (5). The statistics of the deviations around this

relationship will tell us how far, in probabilistic terms, can a city increase, or decrease, its creative and

inventive activities. Figure 1 also shows that the behavior of creatives is different from that of inventors,

as the latter displays much more dispersion around the regression line. In this section we quantify this

behavior by estimating the probability density of these fluctuations.

Conditional distributions. The quantity z (see Eq. (1)) for creatives and inventors is well fitted

by a standard normal distribution (Figure 3), which means that the untransformed numbers yi are

lognormally distributed, conditioned on population size.7 The density of the random variable Y can

thus be written as:

(8) pY |N(y | n ; µn, σn) =
1

y
√

2πσ2
n

e
− 1

2σ2n
(ln(y)−µn)2

.

6Pure power-law functions f(x) = Axa lack characteristic scales, and are often referred to as “scale-free” functions,

since the ratio f(λx)/f(x) = λa is independent of the scale x.
7In this analysis, the instances when y = 0 have been excluded.
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FIGURE 3: Histograms of creative individual counts conditional on population size. We fit a standard normal distribution to the normalized

frequency histograms of the standardized logarithmic counts of creatives (A) and inventors (B). For both plots the counts were transformed

y|Bj
→ z =

ln(y|Bj
)−µ̂j

σ̂j
, where y|Bj

stand for the values of Y for cities with N ∈ Bj , and µ̂j and σ̂j are the corresponding sample mean and

standard deviation of the log-counts of that bin. The bin size used to construct the Bj intervals, was set to a = 1.225 so that there was a good

balance between the number of observations per bin (∼ 25) and the total number of bins (∼ 37). The p-values shown are from a Chi-square

goodness-of-fit test, where we consider p > 0.10 to be an acceptable level to not reject a normal distribution. See the Appendix for more details

on goodness-of-fit tests.

Based on the goodness-of-fit tests presented in the Appendix, we conclude that Equation (8) provides a

good description of the number of creative class workers and inventors for cities of comparable population

size. .

Lognormal distributions have a long history in economics (Aitchison and Brown, 1957), and in the

natural sciences in general (Redner, 1990; Limpert et al., 2001). In this sense, it is not a surprise to find

the distribution of creatives and inventors to be lognormal. However, it is an unexpected result given

that the variables Y of total counts can be written as the summation over all N individuals in the city,

(9) Y =
N∑
k=1

Xk,

where Xk = 1 if individual k belongs to the creative class workforce (or to the group of inventors),

and Xk = 0 if not. Expressing Y as a sum of random variables as in Equation (9) reminds us of the

Central Limit Theorem. Since N is a large number, and Xk are random variables with finite variance,

the random variable Y would be normally distributed if the Xk were independent random variables.

Since we do not observe normality in the distribution Y , we conclude that Xk are not independent. In

other words, being a creative or inventive individual literally depends on whether others in the city are

12



FIGURE 4: Population size dependence of the log-normal parameters estimates of each bin. Creatives (A) and inventors (B) are shown here

to differ in how the variance of the logarithmic counts σ̂2
n =

∑
(lnY − µ̂n)2/(m− 1) depends on size, and the level. Although the variance is

much higher for inventors, there is a weak tendency to decrease with population size.

creative or inventive. Formally, this is

(10) pY (y) 6= Normal =⇒ P (Xk = 1, Xk′ = 1) 6= P (Xk = 1)P (Xk′ = 1),

for two individuals k, k′ = 1, . . . , N in the city.

Population size dependence of the log-variance. As was shown in the previous section, each bin

corresponds to a collection of lognormally distributed variables. Figure 4 plots the n-dependence of

the parameter σn of those bins. For creatives σ̂n ≈ 0.32 while for inventors σ̂n ≈ 1.47 − 0.04 ln(n),

quantifying the fact that creative employment counts vary less than inventor counts, given population

size.

The results coming from the behavior of the σ parameters stand as an important restriction on the

type of models that should generate our statistics. In particular, they say that the variance of the

logarithmic variables varies weakly with population.

The standard deviation s(Y |N) of the lognormally distributed random variable Y is, by definition,

proportional to the mean. Specifically,

s(Y |N) =
(

eσ
2
N − 1

)1/2

E(Y |N).

Using what we know about E(Y |N), we conclude that the standard deviation s of the variable Y scales

with population size as

(11) s(Y |N) ∝ Nβσ ,

13



where βσ ≈ β for creatives (Figure 4A), and βσ . β for inventors (Figure 4B). Since the levels of

creative and inventive activities are strongly correlated from one year to the next (Bettencourt et al.,

2010), increases in population size will exacerbate any existing deviation from the mean.

The parameter µn is not shown, but it can be deduced from the fitted line shown in Figure 1. The

full specification of pY |N(y|n) allows us to calculate, for example, what is the most probable level of

creative and inventive activities for each metro and micro area according to their population size, and

how probable it is that they have their current level, or one greater. Table 1 presents 12 outlier cities (5

micropolitan and 7 metropolitan areas) which had log-deviations from the log-mean, in either creatives

or inventors, whose likelihood was less than one over the total number of cities. In mathematical

terms, we chose those cities for which y /∈ [eµn−zσn , eµn+zσn ]. The value of z has been chosen such that

1 − Φ(z) < 1/938 ≈ .00107, where Φ(·) is the cumulative normal standard distribution. This yields

z = 3.07,

Since lognormal distributions are skewed and our sample of cities in each population bin is finite

and small, the most probable value eµn−σ
2
n stands as a good comparison point to assess the creative and

innovative profile of urban areas.

The Los Alamos micro area is the smallest of the cities, yet has more than 200 times the number

of inventors that was most probable to have, and three times as many creatives, according to its size.

On the other extreme, the San Jose metro area is the largest of in the Table, and has also very unlikely

counts of both inventors and creatives. Likewise, for Durham-Chapel Hill. Table 1 gives quantitative

calculations that show how these urban areas are very unlikely cities, and that the reasons behind their

extreme values must be analyzed separately.

The cases of Mountain Home (ID) and Clovis (NM) are interesting. They belong in the table

because the former has more than 500 times more inventors than it should, and the latter has five times

less, which according to their size makes them outliers. But their respective number of creatives is

also interesting. The skewness of the lognormal distribution enables the fact that, while having more

creatives than the most probable value, they have more than 50 percent likelihood for increasing their

creative employment. Palm Coast (FL) presents a similar case: it has more than the probable number

with respect to inventors, but less with respect to creatives. In fact, it belongs to the table because it

has an extremely low level of creative employment. These three cities, given the whole US urban system

in which they are embedded, have good potential to increase their creative activities.

Our main finding is that the statistics of creatives and inventors for cities of comparable population

size are all well described by lognormal distributions. One of the implications behind the lognormality

of Y is that the distribution is determined by two parameters only. Using tools from information

theory, a lognormal distribution can be understood to arise from the maximization of entropy subject

to informational constraints on the geometric average and the geometric standard deviation, i.e., eµ
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and eσ, respectively (Frank and Smith, 2011). This means that the processes that increase or decrease

creative and inventive activities in cities are sensitive, in a multiplicative way, to the variations of a

large number of input factors.

Lognormal distributions also indicate that the counts of people involved in creative activities increase

from a conjunction (product) of effects (“A and B and . . . ”), as opposed to normal distributions which

arise from disjunction (sum) of events (“A or B or . . . ”). The way in which the expressions Y =
∑

kXk

and Y =
∏

i Fi can be mutually compatible is if the factors Fi influence all individuals k = 1, . . . , N

in a similarly multiplicative way. The fact that factors influence all individuals is part of the reason

why the random variables Xk are correlated. Given our results, we are unable to say whether factors

Fi are endogenous to the social networks of the city, or exogenous as in the case of the weather and the

geography.

Regardless, the conclusion is the same. The right regional amenities, job opportunities, partnerships,

etc., all have to act in consonance in order to increase the creative endowments of a city. From a public

policy perspective, one of the implications is that there is no single-subject silver bullet for fostering

innovation in cities of a given population size. Increasing the creative endowments of a city (e.g., creative

employment and inventors) requires a coordinated array of propitious circumstances such that all the

steps necessary in their enhancement are successful. This is characteristic of multiplicative processes.

However, such processes in cities must be further restricted by the population-size (in)dependence of

the distribution parameters as discussed above.

5. Discussion

We have characterized the full statistical distribution of creative and inventive activities, measured

as counts of individuals, within and across different population size scales, for the U.S. system of

metropolitan and micropolitan areas. Three main facts were established in our analysis. First, the

counts of creatives and inventors is a Pareto distribution for medium-sized cities, but exponential for

the large-sized. Second, for cities of the same population size, the counts are lognormally distributed.

And third, both the mean and the variance of the lognormal distribution are power-law functions of

population size.

Our focus on probability distributions generates an epistemological question. Are the distributions

simply a statement about our ignorance regarding the factors and mechanisms behind the processes of

creativity and invention? Or do they reflect a deeper characteristic of how cities work, namely, that

such innovation processes in cities are inherently stochastic?

Regarding innovation and the growth of cities, Agrawal notes that “[through] a comprehensive survey

of the modern literature on innovation and regional growth, [one] discovers how much we don’t know

about the mechanisms at work behind the curtains—it is predominantly the statistical correlations
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between presumed input factors and outputs that assume the spotlight in recent empirical work on this

topic” (Agrawal, 2003, p. 460). The assumption behind traditional efforts to understand the sources

of innovation is that some few, specific, and well-defined factors underlie the agglomeration of creative

and inventive individuals. The presence of lognormals, we have shown, suggest otherwise. By invoking

the Central Limit Theorem, lognormals suggest that the number of factors is large. A limitation of

our study, at first sight, is that we have only analyzed how likely or unlikely is to observe a city’s

creative and inventive endowments, eschewing any mention to specific mechanisms. But in fact we

believe framing this question in the language of probabilities contributes to our understanding of the

“mechanisms behind the curtains”.

The empirical distributions reported here suggest two characteristics about the mechanism that

determines the levels of creative and inventive activity in cities. One, is that this process is some type of

constrained multiplicative random process. And second, that the behavior of individuals is correlated

in cities. This evidence of a multiplicative process that correlates individuals strongly suggests, in turn,

that the factors influencing creativity and inventivity, positively or negatively, get amplified, and this

emphasizes the need to have structural views of the functioning of cities.

In analyzing the processes of innovation, it is possible that we will only understand them if we

explicitly deal with the statistical distributions involved, as opposed to only the averages. And reasons

abound, in the sense that cities, by virtue of being collections of a diversity of people, firms and

institutions, connected through a myriad of physical and informational networks, fluctuate from their

expected behavior, often very wildly. Further studies that model cities in a stochastic way are therefore

needed.

As the nations draw more heavily on their capacity to produce knowledge to foster economic growth,

and as its total population grows and gets increasingly concentrated in cities, questions about how the

power of creativity and inventivity can be harnessed to keep creating wealth also become central. Here

we have delineated, in precise quantitative terms, the probabilistic landscape in which cities embedded

in a larger system can be found.

A clear statistical description of cities across an urban system had been missing as a way to under-

stand innovation in urban systems. Here we have provided some empirical facts regarding this. Still,

these facts remain to be explained and reproduced by a detailed mechanistic model. Given the sug-

gestive evidence of multiplicative processes at play, further studies should aim to identify and quantify

explicitly the different steps involved in attracting creativity and the production of knowledge.

Our cross-sectional study of the US urban system is still missing an analysis across time. That

is, future studies should aim to characterize the distribution of creative and inventive activities for

individual cities throughout the years. Bettencourt et al. (2010) highlight the fact that urban aggregate

measures, in general, are highly correlated in time. This is relevant to our study since it indicates that
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TABLE 2: Comparing probability density function fits for the distribution of creative employment conditioned on population size. This table

shows the goodness-of-fit of different bell-shaped standard distributions to the logarithmic counts of the data. The best model, in relation to

the others presented, is presented in bold. Note, that there is no parameter estimation involved here, since the logarithmic counts have been

standardized

Goodness-of-fit Laplace(0,1) Logistic(0,1) Cauchy(0,1) Lognormal(0,1)

Log-likelihood -1354.99 -1492.1 -1531.89 -1306.53

AIC 2713.99 2988.21 3067.79 2617.06

BIC 2723.66 2997.88 3077.46 2626.74

p-value (Anderson-Darling) < .0001 0. 0. 0.1466

p-value (Pearson χ2) < .0001 < .0001 < .0001 0.6231

measures of cross-sectional variation are the result of cumulative effects over time.
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Appendix

Conditional distributions goodness-of-fit tests

In Tables 2 and 3 are shown some comparative tests of different distributions that could be fitted

to the conditional distributions of creative employment and inventor counts. Since, from Fig. 3 it is

clear that the logarithmic variables have histograms that are bell-shaped, we consider in the analysis

four standardized distributions: laplace, logistic, cauchy, and log-normal. The distributions that are

not rejected with a confidence level of p = 0.05 are shown in bold.
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TABLE 3: Comparing probability density function fits for the distribution of inventors conditioned on population size. This table shows the

goodness-of-fit of different bell-shaped standard distributions to the logarithmic counts of the data taking. The best model, in relation to

the others presented, is presented in bold. Note, that there is no parameter estimation involved here, since the logarithmic counts have been

standardized

Goodness-of-fit Laplace(0,1) Logistic(0,1) Cauchy(0,1) Lognormal(0,1)

Log-likelihood -1349.19 -1487.82 -1526.17 -1304.19

AIC 2702.82 2979.63 3056.35 2612.39

BIC 2712.49 2989.30 3066.02 2622.06

p-value (Anderson-Darling) < .0001 0. 0. 0.1357

p-value (Pearson χ2) < .0001 < .0001 < .0001 0.23059
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FIGURE 5: Complementary cumulative distribution of population sizes. In this plot it can be seen that a cutoff in the largest population sizes

is present, suggesting an accumulated effect from constraints to growth. For fitting the density function (12) of pN (n), we used the estimated

parameters of the density pY (y) for creative employment counts (see Appendix). Thus, β̂ = 1.083, the estimated exponent is α̂ = 1.675, the

estimated characteristic scale of the exponential tail is ν̂ = 11, 329, 658, and the model holds for populations above n̂min = 35, 141 (dashed

gray vertical line). See Appendix for goodness-of-fit tests.

Marginal distribution fits

Figure 5 shows the empirical complementary cumulative distribution of population sizes. The func-

tion

(12) pN(n;α, β, ν, nmin) = C
e−(nν )

β(
n
ν

)α , n ≥ nmin,

provides a good fit (solid red line). Here, C is a constant of normalization, α > 0 stands as an exponent

that determines the broadness or narrowness of the distribution, ν is a characteristic scale above which

an exponential decay dominates, and β is the scaling exponent in Equation (5). This function supports

the widely accepted result that population sizes are well described by a Pareto distribution in the upper

tail, but here we find evidence of a cutoff for the largest cities (see Berry and Okulicz-Kozaryn, 2012,

Section 4 and the references cited therein for a discussion about this cutoff).
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The rationale behind Equation (12) comes from the fact that we actually estimate the marginal

distribution of Y , and we use the close relationship between creatives and population size to derive the

distribution of N . The close relationship between Y and N (Figure 1) suggests that whichever behavior

we see in the distribution of one we will also see in the distribution of the other. It turns out, the

distribution of Y shows the usual heavy tailed Pareto behavior seen for population sizes, but with a

strong signal of a decay for large numbers. The reason this decay is more easily detected in Y than

in N , we argue, is because the exponent β > 1 strengthens such decay. In the following, we will first

estimate the empirical distribution of Y , we will then show the derivation for the distribution of N , and

we will present goodness-of-fit comparison with other distributions.

Now, from Figure 1B we know that more than 97 percent of the variability in creative employment

is explained by population size. If we assume the relationship Y = Y0N
β is exact, we can use the

conservation of probabilities

(13) pY (y)dy = pN(n)dn

to derive the distribution of N . Since dy/dn = βY0n
β−1, we have that

pN(n) = pY (y)
dy

dn

=
βγτ−1

Γ(1− τ, ymin/γ)

e−Y0n
β/γ

Y τ−1
0 nβτ−β+1

.(14)

Equation (14) can be written as

(15) pN(n;α, β, ν, nmin) = C
e−(nν )

β(
n
ν

)α , n ≥ nmin,

where the constant of normalization is given by

C = β
ν−1

Γ
(

1−α
β
,
(
nmin

ν

)β) ,
and

α = β(τ − 1) + 1(16)

ν =

(
γ

Y0

)1/β

(17)

nmin =

(
ymin

Y0

)1/β

.(18)

This way, although the distribution of N has four parameters, they are fully determined by the

parameters of pY (y) and the regression between Y and N . When using the estimates τ̂ , γ̂, and ŷmin,
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TABLE 4: Different estimated probability density functions to fit population size distribution. PLEC stands for “Power-law with exponential

cutoff”, given by Equation (6), and PL stand for “Power-law”, given by a density p(n) ∝ n−α. All four distribution where truncated from

below by the same n̂min estimated using Equation (18)

Goodness-of-fit pN (α, β, ν, nmin) PLEC(τ, γ, nmin) Lognormal(µ, σ) PL(nmin, α)

Loglikelihood -9996.41 -10546.3 -10223.5 -10000.6

AIC 20000.8 21098.5 20451.1 20005.2

BIC 20019.4 21112.6 20460.3 20014.5

p-value (Anderson-Darling) 0.6889 0.3193 0. 0.0255

p-value (Pearson χ2) 0.3970 0.5338 0. 0.3083

from creative employment, we get from Equations (16)-(18) that α̂ = 1.675, β̂ = 1.083, ν̂ = 11, 329, 658,

and n̂min = 35, 141.6.

Table 4 presents goodness-of-fit comparisons as given by the Akaike Information Criterion and the

Bayesian Information Criterion with other distributions. The distributions that are not rejected with a

confidence level of p = 0.05 are shown in bold.
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Muneepeerakul, R., Lobo, J., Shutters, S. T., Gómez-Liévano, A., and Qubbaj, M. R. (2013). Urban Economies and

Occupation Space: Can They Get “There” from “Here”? PLoS ONE, 8(9):e73676.

Nelson, R. R. and Winter, S. G. (1982). An Evolutionary Theory of Economic Change. The Belknap Press of Harvard

University Press, Cambridge.

Newman, M. E. J. (2005). Power laws, pareto distributions and zipf’s law. Cont. Phys., 46(5):323–351.

Piore, M. J. and Sabel, C. F. (1984). The Second Industrial Divide: Possibilities for Prosperity. Basic books.

Rauch, J. E. (1993). Productivity Gains from Geographic Concentration of Human Capital: Evidence from the Cities.

Journal of Urban Economics, 34:380–400.

Redner, S. (1990). Random multiplicative processes: An elementary tutorial. Am. J. Phys., 58(3):267–273.

Romer, P. M. (1986). Increasing Returns and Long-Run Growth. The Journal of Political Economy, 94(5):1002–1037.

Romer, P. M. (1990). Endogenous Technological Change. Journal of Political Economy, 98(5):S71–S102.

Shearmur, R. (2012). Are cities the font of innovation? a critical review of the literature on cities and innovation. Cities,

29:S9–S18.

Simon, H. A. (1955). On a class of skew distribution functions. Biometrika, 42(3/4):425–440.

Simon, H. A. (1968). On judging the plausibility of theories. In Rootselaar, B. V. and Staal, J., editors, Logic, Methodology

and Philosophy of Science III, volume 52 of Studies in Logic and the Foundations of Mathematics, pages 439–459.

Elsevier.

Soo, K. T. (2005). Zipf’s law for cities: a cross-country investigation. Regional Science and Urban Economics, 35:239–263.

23



Sornette, D. (2012). Probability Distributions in Complex Systems. In Computational Complexity, pages 2286–2300.

Springer.

Storper, M. (1997). The Regional World: Territorial Development in a Global Economy. Guilford Press.

Strumsky, D. and Thill, J.-C. (2013). Profiling U.S. Metropolitan Regions by Their Social Research Networks and Regional

Economic Performance. Journal of Regional Science, 53(5):813–833.

Weil, D. N. (2012). Economic Growth. Prentice hall, New York, 3 edition.

Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley

Press, Cambridge.

24


