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ABSTRACT

Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With

it, the notions of size, heterogeneity and structure have taken a leading role. These notions

are assumed to be behind the causes for why cities differ from one another, sometimes

wildly. However, the mechanisms by which size, heterogeneity and structure shape the

general statistical patterns that describe urban economic output are still unclear. Given

the rapid rate of urbanization around the globe, we need precise and formal mathematical

understandings of these matters. In this context, I perform in this dissertation probabilis-

tic, distributional and computational explorations of (i) how the broadness, or narrowness,

of the distribution of individual productivities within cities determines what and how we

measure urban systemic output, (ii) how urban scaling may be expressed as a statistical

statement when urban metrics display strong stochasticity, (iii) how the processes of ag-

gregation constrain the variability of total urban output, and (iv) how the structure of urban

skills diversification within cities induces a multiplicative process in the production of ur-

ban output.
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Chapter 1

INTRODUCTION

The motivation behind the present dissertation is to understand what the obstacles to

the economic development of human societies are. This is a question too big for any one to

answer, much less in a single document. But the question, nonetheless, has been the moti-

vation behind this work, and the work of many academics from a large array of disciplines,

from medicine, architecture and engineering to history, sociology and political science, and

most predominantly, economics. These disciplines offer different points of view for how to

address questions about the obstacles to economic development. This dissertation rests on

the view that these obstacles will be understood once we figure out how the socio-economic

processes that create, occur in, and transform cities work.

In the last decade cities have become a hot topic of research. In part, the works of

Jane Jacobs and Robert E. Lucas, Jr. (Jacobs, 1969; Lucas Jr., 1988) were fundamental to

sway the researchers’ attention from nations to cities. The reason, they argued, is because

many of the proposed causes behind economic growth depend on effects that act locally

(for an interesting counter argument read Polèse, 2005). For example, regarding the effects

of skills and knowledge on economic growth, Lucas Jr. (1988, p. 37) writes: “The external

effects [of human capital] have to do with the influences people have on the productivity of

others, so the scope of such effects must have to do with the ways various groups of people

interact” (emphasis mine). He continues, “we know from ordinary experience that there are

group interactions that are central to individual productivity and that involve groups larger

than the immediate family and smaller than the human race as a whole. Most of what we

know we learn from other people” (Lucas Jr., 1988, p. 38). Finally, he concludes, “What
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can people be paying Manhattan or downtown Chicago rents for, if not for being near other

people?” (Lucas Jr., 1988, p. 39).

But the recent focus on cities comes also from recent events. The year 2008 marked a

transition point in human history in which city dwellers became a worldwide majority when

compared to their rural counterparts, according to the United Nations1. In the World Eco-

nomic and Social Survey 2013, the United Nations warned that new strategies are needed

that address the impacts of urbanization to create a sustainable model of economic devel-

opment (United Nations, 2013).

Indeed, the fact that half of the human beings now live in urban areas means that what

they do in their lifetime will affect many more people than if they lived in rural areas.

By living in a city, their actions will touch more dimensions of the world as a whole,

simply because they will have access to more material and informational resources. A

major question from this point of view is: how does the activity of single urban dwellers

spread through society? Some of these human beings will experience drastic changes in

their quality of life, income, education, and health. Some of these changes will create more

overall wealth, while others will generate more poverty. Our lack of understanding for how

this will happen is disturbing. In this state of affairs we need formal understandings of the

processes of urbanization.

In this dissertation I develop some approaches that incite new questions to understand

cities and open new avenues of research. I do this by building on the recent efforts coming

out of the Santa Fe Institute in New Mexico that aim to develop a New Science of Cities

(Bettencourt and West, 2010).

One of the distinctive aspects of these efforts is that they are motivated by the expec-

tation that all cities share some empirical regularities regardless of time, place and culture

(Bettencourt et al., 2007a, 2013; Bettencourt, 2013; Ortman et al., 2014). These regularities

1Cited in http://www.unfpa.org/pds/urbanization.htm
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compel the development of a scientific theory of urban phenomena. This theory would ex-

plain these regularities based on a few principles about how cities function and develop, and

would produce predictions that would be testable with data. Cities, according to this line

of research, are different manifestations of the same phenomenon: human agglomerations

giving rise to an ecology of social interactions that creates wealth and drives population

growth, leaving a physical mark of infrastructure that feeds on itself to perpetuate human

interaction.

One of the main regularities is an apparent simple empirical association between dif-

ferent urban metrics Y and population size N, in the form of a power-law relationship:

Y = Y0 Nβ . (1.1)

The novelty of this result does not lie in the fact that there is an association between urban

metrics and population size. Also, it is not that the association is non-linear. The novelty

in this discovery is that it is simple (Batty, 2008), and that the exponent β presents some

unexpected regularities, especially when compared to its biological analogue (West et al.,

1997, 1999; West and Brown, 2005).

Bettencourt et al. (2007a) show that for measures of infrastructure, like number of gas

stations, hospitals, length of roads, etc., the exponent is typically βinfr.≈ 0.85; For measures

of socio-economic activity, like total Gross Domestic Product (GDP), crime rates, patenting

rates, etc., βsoc-ec. ≈ 1.15.

Such a relationship is reminiscent of other relationships in the history of Science that

gave way to general scientific theories. Table 1.1 lists some few popular examples. This

is a very short list among several similar scaling relationships that have revealed important

aspects of how natural systems function.

A theoretical explanation of equation (1.1) was recently proposed by Bettencourt (2013).

According to this explanation, equation (1.1) arises from the spatial mixing of agents, with
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Table 1.1: Scaling Relationships That Gave Way to Deeper Understandings of Nature.

Quantities Scaling Law Name Theory

Orbital period T and

distance to the Sun r

T = T0 r3/2 Kepler’s third law Newton’s theory of

planetary motion

Average radios of dif-

fusion r and time t

r = r0 t1/2 Law of diffusion Einstein’s theory of

Brownian motion

Metabolic rate B and

body mass M

B = B0 M3/4 Kleiber’s law Metabolic Theory of

Ecology

limited resources and subject to transportation costs, interacting through physical infras-

tructure (Bettencourt, 2013).

A note on the difference between this approach and others that have been proposed

to understand quantitatively cities, coming mostly from the field of economics, is worth a

few words. The importance of population size as a driver of per capita productivity has

been implicit since the work of Adam Smith. The notion of the division of labor suggests,

for example, that increases in productivity will arise from greater individual specialization,

which is enabled by a larger population of workers. But the work in economics has been

also an exploration about which factors, other than population size, affect productivity. In

this sense, empirical works have been an enumeration activity, listing which factors play

a role in urban productivity, and the theoretical works have followed to support such list-

ings. Urban scaling analysis differs notably from these efforts. For example, one focus of

analysis has been instead to explain the empirical value of β , given that population size

is the explanatory variable of aggregate productivity with the largest explanatory power

(Sveikauskas, 1975; Quigley, 1998; Ó hUallacháin, 1999; Bettencourt et al., 2007a,b; Lobo

and Strumsky, 2008; Bettencourt et al., 2010): why βinfr. ≈ 0.85 and why βsoc-ec. ≈ 1.15?

Perhaps by historical contingency, deriving the values of exponents in scaling relationships

from theory, and understanding their meaning, has been typically in the interest of physi-

cists, like the examples mentioned in table 1.1 (Schroeder, 1991; Whitfield, 2006). Indeed,
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Bettencourt (2013) has derived a value δ = 1/6 for βinfr. = 1−δ and why βsoc-ec. = 1+δ ,

and has linked this exponent δ to the efficient use of resources and energy within a trans-

portation infrastructure that generates structured socio-economic interactions.

We hold in this dissertation that the science of cities must also explain the origin of

the statistical distributions of urban metrics. This science should explain the origin of the

fat-tailed distributions seen at the levels of individuals, such as in personal productivity

(in crimes, inventivity, wages, etc.), and at the level of cities, such as the famous Zipfian

distribution for population sizes (Zipf, 1949). More importantly, a statistical theory of cities

should explain how all these different variables are related and affect others.

I will be referring mostly to the U.S. case, although the research presented in this dis-

sertation is intended to apply to other countries as well (for example, chapter 3 will study

the cases of Brazil, Colombia, and Mexico).

1.1 What Are Cities?

For our empirical studies of cities and urban systems we will use the geographical units

that governmental agencies use, defined as local labor markets. And labor markets in this

context are the geographical areas in which employers and employees can find a match.

The idea behind such definitions is that cities are the places where individuals live and

work. Thus, these definitions of cities also include suburban areas capturing the people that

commute to the denser and more central places where most of the jobs are. In the U.S.

they go under the name of Core Based Statistical Areas, but we will in general use the term

“urban areas”. The specific details of such definitions, which also depend on the country,

will be given in later chapters.

However, since this dissertation goes beyond empirical studies and addresses theoretical

questions as well, a few words about the the concept of city are worth discussing.
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Despite the continued efforts to define cities as regional labor markets more accurately

for socio-economic purposes, the establishment of these boundaries are still arbitrary, given

that cities are open and there is a constant flux of people, not only from the vicinity, but from

the whole urban system (usually the country to which they belong). Hence, how to define

cities is not trivial, and the problem goes beyond decisions about where to put geographical

boundaries (see Rozenfeld et al., 2008, 2009; Arcaute et al., 2013 for alternative definitions

based on population densities).

Cities are usually classified by size and type, and thus we have megalopolis which refer

to regions (or systems of cities), hypercities with over 20 million inhabitants, megacities

with over 10 million, all the way to towns and villages. But how to define a city is not a

trivial matter, and it mostly depends on the question and problem in hand (e.g., read Pickett

et al., 2011). For example, we have administrative boundaries (e.g. from one county to

another), economical boundaries (e.g. metropolitan statistical areas), or ecological bound-

aries (defined by watersheds, mountain ranges, etc.). And different types such as pre/post-

industrial cities or pre/post-World War II cities gives us a way to understand their spatial

structure (Warren et al., 2010).

Questions about the nature of cities go back to Plato and Aristotle, and probably even

before (Portugali, 2000; Bettencourt et al., 2009). Often, conceptual definitions of cities

are expressed through comparisons to other phenomena (Bettencourt et al., 2009 address

quantitatively some of these comparisons). Thus, there is the view of cities as natural

organisms (Graedel, 1999; Berry, 1964), as machines (Batty, 2012), as informational non-

linear systems (Crosby, 1984; Portugali et al., 2012), fractals (Frankhauser, 1994; Batty

and Longley, 1994; Batty, 2005), as social networks (Jacobs, 1969, 1985; Glaeser, 2011),

and more recently, as social reactors (Bettencourt, 2013). These analogies also come with

their respective caveats about how different and unique cities are from these other phe-
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nomena. And yet, the debate about how to define cities seems to be endless (Berry and

Okulicz-Kozaryn, 2012).

Given that our focus of analysis is on economic output, we pay special attention to one

of the many aspects of cities: self-organized, physical systems constantly producing ma-

terial and informational output. However, this dissertation does not offer a new definition

of cities. It rather builds on already existing ideas of cities as inherently noisy, messy, fi-

nite, and complex collections of interacting elements (Batty, 2005; Bettencourt et al., 2009;

Storper et al., 2012; Scott and Storper, 2014), to advance an already existing methodology

in a context in which it has been seldom used. That is, the study of probability distributions

(i.e., the distributional approach) of urban metrics beyond the conventional population size

distributions, and the mechanisms they suggest.

1.2 What Advantages does a Distributional Approach Bring?

The guiding principles in economics of competitive markets, equilibrium of supply and

demand, utility maximizing agents, and, in the particular case of urban economics, the spa-

tial equilibrium hypothesis (Glaeser, 2008), are rich enough that they provide specific and

testable predictions about the behavior of variables of interest. Hence, depending on the

few additional assumptions and the question of interest, researchers in the field of urban

economics have focused on studying, for example, the impact of human capital on produc-

tivity, or the positive and negative correlations between land rents, consumption and wages

(Moretti, 2012). Among the many statistical methodologies that may be used to analyze

data from cities, the most common, by far, have been econometrics and regression models.

“In its most canonical and popular form, a regression analysis becomes a “structural

equation model” from which “causal effects” can be estimated” (Berk, 2010, p. 481). With

this goal in mind, economists have advanced not only our knowledge of cities, but the tools
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of econometrics to analyze them and extract causal effects. With the advances in compu-

tational processing times, economists now have in their hands sophisticated and powerful

statistical tools to test their ideas accurate and precisely. As explained by Berk (2010),

though, the models to be tested must be “nearly right”. And by this Berk means that the

model must accurately represent reality. Which is, in turn, a problem. As a consequence,

“[i]n the absence of a nearly right model, the many desirable statistical properties of a

causal model can be badly compromised” (Berk, 2010, p. 482). Strategies to deal with

problems of model misspecification exist, but in practice they often complicate the matters

even more since additional new and untestable hypothesis are typically required.

Berk (2010) asserts that the solution to these problems is to broadly redefine regression

analysis. Accordingly, he states that regression analysis, broadly understood, is “[to un-

derstand] as far as possible with the available data how the conditional distribution of the

response [...] varies across subpopulations determined by the possible values of the predic-

tor of predictors” (emphasis mine, Berk, 2010, p. 483). This definition, according to Berk,

does not make any mention about addressing causal statements. Throughout this disser-

tation I will refer to this broad form of regression analysis as the distributional approach.

Conventional regression analysis (e.g., econometrics), thus, consists of a particular step in

the distributional approach in which we focus on the conditional mean. From this perspec-

tive, conventional regression analysis is a subset of a larger and more general distributional

approach.

Distributional perspectives have been historically more common in the natural sciences,

such as in physics (Sornette, 2006) and biology (Harte, 2011), than in the social sciences,

such as the regional sciences. In economics, the study of probability distributions has been

mostly limited to firm and city sizes, and financial price movements (see Gabaix, 2009 for

an overview). Studying the intrinsic variability found in and across cities, and finding the

commonalities among the differences, has started to be the subject of study of a few investi-
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gators (Bettencourt et al., 2010; Gomez-Lievano et al., 2012; Youn et al., 2014; Bettencourt

et al., 2014; Alves et al., 2013b,a, 2014; Storper et al., 2012; Scott and Storper, 2014), but

these efforts are still incipient, and we need theoretical developments that address this vari-

ability directly. Incorporating into our study of cities a distributional approach is necessary

given that we not only want to understand the tendencies of the different variables, but also

their generative processes (Sornette, 2012; Frank, 2009; Frank and Smith, 2011). And this

is especially relevant in cities given their inherent heterogeneities. This dissertation is the

first study that contributes to the regional sciences literature by studying probability dis-

tributions of urban aggregate output, generally understood, their meaning and relation to

possible generative mechanisms.

The capacity of the distributional approach to suggest generative mechanisms is the

main reason we adopt such methodology. By defining the full statistical distribution of our

variables of interest, we are able to simulate the system under analysis (see, e.g., chapter 2,

chapter 5, and appendix H), and have a more holistic analysis to the generated statistical

patterns. Whereas the predictability in econometric analysis comes from being able to

estimate average behaviors, from a distributional approach, predictability comes from the

full statistical characterization of the phenomenon at hand.

The scientific process of understanding and discovery of the world does not discrimi-

nate among particular methodologies, as long as these methodologies enable the disproving

of our hypothesis and theories (Deutsch, 2011). And some methodologies are more appro-

priate than others for answering particular questions. Hence, science advances the best

when multiple methodologies are used to understand a phenomenon (Mayo, 1996).2 There

are certain instances in which the estimation of the conditional mean is enough. The fol-

lowing chapters in the dissertation will show, however, that a broader understanding of

2Mayo (1996)’s book, interestingly, advocates for the eclectic use of statistical strategies to identify errors

and falsehoods in our hypothesis, but strongly criticizes Bayesian approaches.
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cities emerges from applying a general regression analysis, as understood by Berk (2010),

that not only focuses on the mean, but also on the deviations from it.

1.3 Overview of the Topics

1.3.1 Are Cities Finite Systems that Violate the Law of Large Numbers?

When studying economic productivity in cities, the first observation is that there are

wide differences in productivities per capita across cities. This “stylized fact” still lacks a

definite explanation, despite much progress in urban economics. In conventional regression

analysis, the goal is to find the explanatory variables that best correlate with productivity per

capita in cities and reduce the unexplained variance. But is there a different interpretation

of this stylized fact? Is there a mechanism that would generate the patterns of productivity

per capita that we see? Our answer is that there is at least one, and it consists of a violation

of the law of large numbers when using per capita measures under some situations that we

analyze.

Our study in chapter 2 stands as a counter argument to one recent criticism of the

urban scaling approach, which was expressed as: “The impressive appearance of scaling

. . . is largely an aggregation artifact, arising from looking at extensive (city-wide) variables

rather than intensive (per-capita) ones.” (Shalizi, 2011, p. 1). This criticism assumes that

per capita transformations are always valid. We provide formulas for actually guiding this

decision to use per capita measures.

This problem is a core part of our scientific understanding of cities, since we want to

understand how systemic properties arise from the micro-components. We thus follow Us-

laner (1976, p. 131)’s recommendation that “[p]er capita measures should not be shunned,

but theoretically justified”.
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1.3.2 Urban Laws

The urban scaling law is really a statistical statement, and sometimes the deviations

from it can be large. These deviations can even result in an apparent conflict with what

scaling means. For example, how can equation (1.1) be valid if sometimes we observe

many cities with Y = 0, as in homicides counts? This and other remarks highlight the need

for a probabilistic statement of urban laws.

Bettencourt et al. (2013) note that “[a]n ultimate theory of cities should provide pre-

dictions about urban indicator statistics, including the expected value of deviations from

the mean scaling prediction and the correlations in time and space of these deviations. . . A

statistical theory of cities is necessary to eventually account for individual and collective

variability in and across urban areas” (Bettencourt et al., 2013, p. 6 & p. 19).

In chapter 3 we develop a statistical description of urban scaling at the aggregate level.

Together with the scaling law expressed in equation (1.1), there exists another so-called law

that describes the distribution of population sizes of cities for most urban systems: Zipf’s

law (Zipf, 1949; Mandelbrot, 1961; Gabaix, 1999, 2009; Batty, 2008; Giesen et al., 2010;

Malevergne et al., 2011; Ioannides and Skouras, 2013). Two important results of this study

are worth mentioning here: First, the exponent in the scaling law is a ratio between the Zipf

exponents of the marginal distributions of population size N and the metric Y . And second,

the conditional distribution of Y given N is approximately lognormal.

1.3.3 Human Capital

Innovation and knowledge creation have been identified in the literature as major de-

terminants of urban economic growth and development, starting with the original “new

growth” theories of Romer (1986, 1990) and Lucas Jr. (1988). Three empirical facts stand

out: (1) Highly educated people concentrate disproportionately in larger cities (Rauch,
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1993; Glaeser and Saiz, 2004; Bettencourt et al., 2007b). (2) The population of places with

high levels of human capital grows faster than places with low levels (Glaeser et al., 1995;

Acs, 2002). And (3), increases in human capital entail gains in regional productivity and

innovation (Glaeser et al., 1995; Rauch, 1993).

Whereas some of the literature has maintained that technologies are the embodiment of

ideas and knowledge, part of the field in urban economics has shifted its attention instead

to the sources of knowledge, that is, people (Jones, 1995; Bettencourt et al., 2007b; Florida

et al., 2008; Jones and Romer, 2010). However, although the early research studies on the

effects of human capital on productivity improved our understanding of cities, their scope

was too narrow, because they limited their definition of human capital only to the level of

educational attainment.

The recognition that knowledge is about the accumulation of ideas, and that ideas are

ultimately originated in individuals (Jones, 1995; Jones and Romer, 2010), shifted the em-

phasis towards skills and the notion of “tacit knowledge”. In this context, spatial proximity

matters. And it is population size, the diversity of skills found in individuals (i.e., the

tacit knowledge that people accumulate through education and experience), and what they

actually do with them, that set a more adequate basis on which to study the economic per-

formance of cities. In this line, the work of Florida (2004, 2011); Florida et al. (2008)

redefined what is understood by “human capital” with their definition of creative class

employment. As Florida notes, “[w]hen talented and creative people come together, the

multiplying effect is exponential; the end result is much more than the sum of the parts.

Clustering makes each of us more productive–and our collective creativity and economic

wealth grow accordingly” (Florida, 2011, p. 193).

But is the accumulation of “talented and creative people” constrained in some way?

Answering this question is important since it is assumed that constraints in the creative
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and inventive activities in urban areas would hamper economic growth. We answer this

question in chapter 4.

1.3.4 The Structure of Diversification

In urban studies there has been a long and heated debate about whether urban economies

benefit more from specialization or from diversification3 in their composition of firms and

individuals (see Beaudry and Schiffauerova, 2009; Polèse, 2013 for longer discussions

about this topic). Specialization occurs when benefits arise from producers and consumers

of similar industries agglomerate in the same place, resulting in what are called Marshall-

Arrow-Romer (MAR), or localization, externalities. Conversely, diversification occurs if

there are benefits that producers and consumers can exploit from the variety that cities can

provide; these are traditionally called Jacobs, or urbanization, externalities (Jacobs, 1969;

Glaeser et al., 1992). This topic is part of a more fundamental question in urban economics

of why people and firms agglomerate in cities in the first place despite incurring in asso-

ciated costs of congestion and higher land rents. By now, the empirical literature has in

general shifted to support the Jacobs’ type of benefits to diversity (Quigley, 1998). The

models addressing the problem of agglomeration economies emphasize three mechanisms

(Duranton and Puga, 2004; Rosenthal and Strange, 2004, 2006; Puga, 2010): sharing (e.g.,

of goods, facilities, risk), matching (e.g., for job seekers and employers), and learning (e.g.,

as in knowledge spillovers).

Much of the corresponding theory on economic development has been done in the

framework of Cobb-Douglas production functions that only use aggregate levels of physical

and human capital as inputs. This conceptualization does not address the question about

the specific mechanisms which transform diversity into productive output (see, however,

Duranton and Puga, 2004). In fact, the neglect of diversity is already implicit in the notion

3I will use the words “diversification” and “diversity” interchangeably.
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of “substitution”, which is one of the basic assumptions behind Cobb-Douglas production

functions. Ironically, the recognition that not only the extent (captured by population size),

but also the structure of diversity in cities are important to economic productivity can be

traced back to some of the earliest works in urban economics. Jacobs (1969), for example,

emphasized that economies not only expand by doing more of the same, but also develop

by adding new kinds of work. Similarly, for Sveikauskas (1975, p. 394), “[c]reativity, or

the successful adaptation to change, can be thought of as the rearrangement and recombi-

nation of hitherto separate elements.” And later on, Lucas Jr. (1988, p. 35) stated that “a

successful theory of development. . . has to involve more than aggregative modeling”.

In the context of economic growth at the level of countries and the portfolio of products

that countries export, Hidalgo et al. (2007); Hidalgo and Hausmann (2009); Hausmann

and Hidalgo (2011) have developed a framework to think about economic growth as a

process of economic diversification. They propose a production function that transforms

the complexity of “capabilities” (i.e., skills and tacit knowledge) that countries possess,

into the explicit diversity of goods that nations produce, thus going beyond explanations

that rely only on the aggregated levels of physical and human capital.

Brummitt et al. (2012) show, however, that standard measures of occupational diver-

sity in the US such as the Herfindahl-Hirschman index or Shannon’s entropy have a weak

statistical predictive power over urban output, once urban scaling with population size has

been controlled for. This suggests the possibility that it is the structure of interdependencies

between occupations that has some explanatory power over urban economic performance

(Muneepeerakul et al., 2013). Recent studies are starting to shed evidence that a struc-

tural view of the urban productivity is needed (Neffke and Henning, 2013; Neffke et al.,

2013). This approach is in contrast with the traditional regression-based studies that have

in the last years increased in size and sophistication. In chapter 5 our motivation is to

know whether this can be formalized in a mathematical and computational model. Given
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the empirical patterns we observe, we want our model to answer the following questions:

after controlling for population size, is the remaining unexplained lognormal variation in

the levels of productive output, e.g., in Gross Metropolitan Product or Patenting, a result of

differences in the structure of urban diversification? Our answer, from the point of view of

the model we propose, is yes.
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Chapter 2

A DISTRIBUTIONAL APPROACH TO URBAN PRODUCTIVITY

In this chapter we introduce some of the motivations to use distributional approaches

to deepening our understanding of cities. To do this, we start with one of the fundamen-

tal questions in urban economics: What explains the wide productivity differentials across

urban areas? We present a parsimonious null model of an urban system that reproduces

some qualitative features of real world data. The model highlights (1) the importance of

considering the internal heterogeneity existing in cities using probability theory, and (2) the

importance of examining how aggregate measures of productivity change with population

size as a way to understanding the underlying generative processes.1

2.1 Introduction

Figure 2.1 plots the number of patent applications per capita in a cross section of the

U.S. Metropolitan and Micropolitan Statistical Areas in the year 2000, against population

size. As can be seen from the figure, there is significant variation in productivity across

urban areas. These different levels of patent production are, presumably, a good reflection

of the differences in the average productivity of the individuals living in those places. The

question is thus: Why are some urban areas more productive than others?

We will not provide a direct answer to this question, which has been one of the central

subjects of study of the urban economics discipline (Polèse, 2013). We address a related

question instead: What interpretations should we give to our productivity measures? In

other words, How should we interpret what we see in fig. 2.1, and what methodology

1This work was done in collaboration with Professors Vladislav Vysotsky and José Lobo.
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Figure 2.1: Patents Per Capita in U.S. Metropolitan and Micropolitan Statistical Areas (CBSAs) Against

Population Size in the Year 2000. Urban Areas with Zero Patent Applications Are Not Shown, and as a

Consequence, Only 895 Dots Are Shown out of 938. Source: U.S. Patent and Trademark Office.

should we use? We are going to show a set of mathematical and computational results

which challenge the prevailing view that the large productivity differentials come from a

few, yet to be discovered, factors of production. Rather, we will argue that the reason

behind the differences in productivity in fig. 2.1 may be that urban processes are intrinsi-

cally stochastic. If this is the case, our theories should reveal the mechanisms behind those

processes.

We will show that if the goal is to understand the mechanisms underlying the differ-

ences in productivity of urban areas a more adequate way of looking at the data is through

aggregate measures of productivity, as opposed to per capita measures. That aggregate

measures must be studied under the lenses of scaling analysis, and that their fluctuations,

given population size, must be objects of a distributional analysis.

The qualitative features of fig. 2.1 are not unique to patents per capita, and also appear

in other socio-economic measures of productivity per capita. Figure 2.2 plots real personal

income (fig. 2.2a), real wages (fig. 2.2b), and real GDP per capita (fig. 2.2c), for the U.S.
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(a) Price-Adjusted Estimates of Real

Per Capita Personal Income, Chained

2008 Dollars.

(b) Real Wages (See appendix A.1.3 for

the Estimation), Chained 2008 Dollars.

(c) Per Capita Real GDP, Chained 2005

Dollars.

Figure 2.2: Cross Section of Different Measures of Productivity in the 381 U.S. Metropolitan Statistical Areas

in the Year 2012. Source: U.S. Bureau of Economic Analysis.

381 Metropolitan Statistical Areas (see appendix A for details about the sources of the

data). These figures display the same features: large variance in the vertical dimension and

a slight, but statistically significant, positive dependence of the productivities per capita

with population size2. Although the topic of the present chapter is more theoretical than

empirical, we will keep patents as our reference measure of productivity because it is an

unambiguous measure of productivity and because it is also available for Micropolitan

Statistical Areas. Chapter 4 will explain in more detail the construction of this database.

In principle, measures of productivity per capita have the advantage of correcting for

size effects. The fact that after controlling for population size there is still a large variation

left unexplained in urban productivity, such as in fig. 2.1, has motivated a large body of

research in urban economics. Guided by economic principles, researchers have studied a

2Personal income is the income received by all persons from all sources. One must be careful in inter-

preting personal income as a measure of productivity, however, since it also includes non-local sources such

as stock investments, government transfers, rents, etc.. See http://www.bea.gov/scb/pdf/2013/08%

20August/0813_regional_price_parities.pdf for details about the adjustments to control for prices

level differences across regions.
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diversity of causes behind productivity differentials. In doing so, they have advanced and

developed sophisticated econometric models to test the effect of different factors. Thus,

productivity per capita has been regressed against levels of education, infrastructure, in-

dustrial concentration or diversification, crime, and many others. Despite much progress in

the identification of factors best associated with greater productivity (see Puga, 2010), here

we will propose a different approach for how to view productivity in cities (see table 2.1).

Table 2.1: Two Different, Although Not Incompatible, Causes and Interpretations About the Large Variance

Displayed in fig. 2.1, and the Corresponding Methodology That Can Be Used to Understand it.

Interpretation Methodology

1. Few, specific, yet to be identified factors =⇒ Econometrics

2. Inherent stochasticity in the generative mechanisms =⇒ Distributional Analysis

Beyond typical issues about the independence or normality of the errors, or about the

problems of endogeneity of the regressors, conventional econometric models implicitly

assume that:

1. Per capita measures offer valid and representative information of the individuals liv-

ing in a city.

2. There is an exact and deterministic relation between productivity per capita and some

(yet to be discovered) factors that will reduce the error terms in the regression equa-

tions to zero at best, or to a weak white noise, stemming from measurement errors,

at worst.

We contend that the violation of these two assumptions may be an important characteristic

of cities and urban systems. Namely, we should consider the possibility that per capita

metrics of productivity may be inadequate measures of the productivity of individuals and

that the deviations may carry important information not only about unobserved factors, but
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about the processes that generated the data. Given the large variances observed, we should

expect these processes to be highly stochastic.

The null model presented in the following sections will help prove the point that the

conventional assumptions associated with econometric models might not hold. In doing

so, we will show that (1) it is best to leave measures of productivity in their aggregate

version (as opposed to taking a per capita transformation), (2) that population size is an

important, if not the main, explanatory variable that must be included when explaining

productivity, and (3) that the distribution of the aggregate measures conditioned on size

can be informative about the internal workings of cities.

2.2 Aggregate or Per Capita Metrics?

Our understanding of the functioning of cities depends on our understanding of what

happens to the individuals living in them. Information at the level of the individuals, how-

ever, is often unavailable and only aggregate and coarse grained measures at the level of

the whole city are at reach. As a consequence, information about the individuals in a city

is typically inferred through per capita metrics, which come from dividing the total aggre-

gate measure by the population size. Ideally, per capita metrics will represent the average

behavior of individuals in the city.

However, as our ability to probe cities at finer scales grows we increasingly uncover

broad heterogeneities within them. Indeed, recent studies show that inequality is growing in

time (Piketty and Saez, 2003; Banerjee and Yakovenko, 2010), and is worse for bigger cities

than in small ones (Berube, 2014). More and more, the idea of an “average individual” has

been losing its meaning. We do not enter the debate around the topic of inequality in

cities (e.g. Glaeser et al., 2009), but it does serve us as an additional reason to study the

consequences of broad inequalities and population size on the appropriateness of per capita,

as opposed to aggregate, measures.
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Per capita measures are the measurement par excellence of urban socio-economic pro-

ductivity, be it for wealth, invention or crime. But the decision to use a per capita measure

to analyze systemic properties is actually a non-trivial problem that has to be decided based

on formal arguments. Although the problem of what to measure about a system depends

on the analytical context and the questions of interest, here we emphasize that the statis-

tical description of urban systems, and social systems more generally, renders per capita

measures inappropriate in many contexts.

Note that we are not arguing against the use of per capita measures as purely descriptive

tools. If, for instance, the total wealth of a metropolitan area is Y , and its population is N,

both measured to a high degree of accuracy, there is nothing to debate about the fact that

Y/N really is the corresponding metropolitan area’s empirical per capita wealth. What is

debatable is whether this value is representative of the mean of the generative process that

created the individual components of Y . As we will demonstrate shortly, there are situations

that make the use of per capita measures problematic. In these situations, for example, the

same generative process with the same mean will generate a larger productivity per capita

in large cities than in smaller ones, revealing an apparent paradox. Its resolution will be

the heart of our argument for the use of scaling analysis and a distributional approach to

understanding cities.

The problem with per capita measures is commonly expressed as a methodological one.

Some concerns were expressed and analyzed early on, for example, by Uslaner (1976),

who demonstrated that the nonlinearities implicit in per capita transformations can induce

misleading interpretations of the data. Part of the problem is that individual-level properties

are often dependent on the size of the system. Therefore the ratio of two system-wide

measures, each of which aggregates many size-dependent effects (e.g., dividing GDP over

population size), may not stand as a meaningful indicator. In other words, the feedback

between the behavior of the parts and the whole imposes constraints on the type of intensive
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measures that can be defined (see Katz, 2006; Bettencourt et al., 2010). Here we show that

even in simpler systems where this feedback is not present, per capita measures still stand

as inadequate indicators of individual-level properties.

We explore this problem in the light of probability theory. A per capita measure is

an estimate of the mean expected value of an individual-level random variable. In what

follows, we use the random variable X to represent the productivity of an individual. And

we will denote the population size and the aggregate productivity of an urban area by N

and YN ≡∑
N
i=1 Xi, respectively. Intuitively, the validity of per capita measures is guaranteed

by the Law of Large Numbers (LLN). The (weak) LLN states the following:

Theorem (Weak Law of Large Numbers). Let X1,X2, . . . ,XN be independent and identi-

cally distributed (i.i.d.) random variables with mean E [X1]≡ µ < ∞, and let YN = ∑
N
i=1 Xi.

Then,

Pr
{∣∣∣∣YN

N
−µ

∣∣∣∣≥ ε

}
N→∞−→ 0, (2.1)

for all ε > 0.

In other words, as the number of terms N increases, the probability that the sample

average YN/N differs from the true average value µ by an amount ε tends to zero.

The two conditions for the LLN to hold are that the mean exists and is finite, and that

the number of terms N in the sum YN be infinite. Since the latter condition is never met

in practice (all systems have finite number of components), one must define an estimation

interval to approximate µ using YN/N. This determines a region of convergence, i.e., a min-

imum number of terms after which it matters not whether N reaches infinity. This region

of convergence, in turn, is determined by the broadness or narrowness of the distribution of

X1.
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We present in the next section the simplest example of the effects of violating the LLN,

which I will refer to as the Lévy Case. This will set a point of reference for how to think

about our null model.

2.2.1 The Lévy Case

The first condition of the LLN is that E [X ] must be finite. This condition is violated,

for example, if the right tail of the probability density function (pdf) of a random variable

X is Paretian with an exponent τ ≤ 1, meaning that the pdf decays as a power-law

pX(x) ∝ x−τ−1 for x≥ x0 > 0. (2.2)

When τ ≤ 1, the integral
∫

xpX(x)dx diverges, which formally shows that the variable X

lacks a well-defined mean. As a consequence, taking the arithmetic average of a corre-

sponding sample X1, . . . ,XN of i.i.d. random variables from this distribution is not justified,

no matter how large N is. This is because the Law of Large Number will never hold in this

particular case. As N increases, the variable YN/N displays larger and larger fluctuations,

instead of converging to a single value.

In spite of this behavior, the lack of a mean in equation (2.2) (for τ < 1) has an inter-

esting consequence over YN . Namely, that

Ê [YN ] ∝ N1/τ , (2.3)

where the hat symbol ̂ means the estimated value from a finite number of realizations of

the random variable YN . We refer the reader to appendix C for a proof.

There is a vast literature in probability and statistics addressing these and other proper-

ties of heavy-tailed probability distributions (see Embrechts et al., 1997; Kleiber and Kotz,

2003; Newman, 2005; Sornette, 2006, 2012 and references therein). We believe there are

useful insights from this literature that can be applied in the context of urban economics

and regional science.
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In the urban context, as we shall see, even for variables with well-defined means and

variances, problems associated with taking arithmetic averages may exist, stemming from

the characteristic finiteness of cities. Thus, both the broad intravariability that individuals

in social systems often display (see references in Andriani and McKelvey, 2007) and the

finiteness of cities will prevent meaningful interpretations of per capita quantities.

Let us introduce the null model to show how cities may in fact be violating the LLN.

2.3 A Simple Null Model of an Urban System

Model: Let a single city be defined as the collection of N i.i.d. non-negative random

variables Xi, i = 1, . . . ,N, drawn from a lognormal distribution L N (a,σ2) with

probability density function

pX(x;a,σ2) =
1

x
√

2πσ2
e−

(lnx−a)2

2σ2 , (2.4)

with mean E [X ] = µ ≡
∫

xpX(x)dx = ea+σ2/2. The variables X will represent the

productivities of individuals in a city, but could represent the productivity at a higher

level of organization such as a firm.

We generate all the productivities of all individuals for m cities according to equa-

tion (2.4). For city k ∈ {1, . . . ,m} with total population Nk, by definition, adding the

individual variables results in the aggregate output level YNk,k:

YNk,k =
Nk

∑
i=1

Xi,k. (2.5)

The subscript k will in general be omitted, unless explicitly needed.

Figure 2.3 plots again fig. 2.1 (bottom-right panel), but shows additionally the simula-

tion of 895 synthetic cities (top row panels) from this null model. In the simulated data,

each dot is a city, and each city has a population N taken from the real U.S. Metropoli-

tan and Micropolitan Statistical Areas. Hence, both the real and synthetic data consist
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Figure 2.3: Top Row: Synthetic Simulation of Aggregate Output Y for Population Sizes N Taken from

the Real U.S. Metropolitan and Micropolitan Statistical Areas in the Year 2000. For Each City, the Ag-

gregate Output is Y = ∑
N
i=1 Xi, Where X1,X2, . . . ,XN are i.i.d. Random Variables Lognormally Distributed

L N (a,σ2). The Parameters a and σ Have Neen Set so that µ = ea+σ2/2 = ∑Yk/∑Nk, Where Yk and Nk

Represent the Real Total Number of Patents and Population of the k-th Urban Area. And We Set σ = 6.0,

Which, According to fig. 2.5, Results in a Scaling Exponent of β̂ ≈ 1.37. Bottom Row: Real Data, in Which

the Output Y Represents the Number of Patent Applications in the Year 2000 Assigned to Each Micropolitan

and Metropolitan Area.

of the same number of cities with the same population sizes, but they differ in their ag-

gregate productivities. The synthetic total output YN = ∑
N
i=1 Xi was computed by simu-
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lating the whole collection of Xi, for each city. All variables Xi for all cities were gen-

erated from the same lognormal distribution with parameters σ = 6.0 and a such that

E [X ] = µ = ea+σ2/2 = ∑Yk/∑Nk (i.e., the patents per capita across all urban areas), where

Yk and Nk represent the real total number of patents and population of the k-th urban area.

The panels to the left and right represent the same information. The only difference is that

to the left total aggregate values are shown and to the right the per capital values.

The parameter σ in our null model controls both the slope of the productivity per capita

with population size and the overall spread around this average trend (the parameter a

controls the intercept). Figure 2.4 shows this effect for six different values of σ . The black

dashed line is E [X ], the expected value of per capita number of patents. Note that E [X ]

does not have a dependence on N, whereas YN/N does (purple solid line), despite the fact

that E [YN/N] = E [X ]. This is reminiscent of the Lévy Case presented in section 2.2.1,

except this time not only is E [X ] finite, but also all the other moments E [Xn].

Figure 2.5 plots the effect of σ on the exponent β̂ of the regression between the syn-

thetic ln(Y )’s and their corresponding ln(N). As the value of σ increases and the tails of the

lognormal become increasingly heavier, the value of β also increases, which means that the

total output YN scales more and more steeply with larger population sizes. The similarity

of the simulated data (top-right panel) to the real data (bottom-right panel) in fig. 2.3 was

thus generated from this simple null model. By adjusting the parameter σ so that β equals

the real scaling exponent: for β̂ = 1.37, we set σ = 6.0. It is observed that the exponent

β ≈ 1.16 reported by the recent literature in urban scaling (see Bettencourt et al., 2007a;

Bettencourt, 2013) is reached for σ ≈ 4.5.

The possibility that these empirical scaling exponents may be due in part to the fat tails

of the distribution of individual productivities has a direct effect on our use of per capita

metrics of productivity. Figure 2.6 plots the convergence of YN/N as N increases for the

specific case of σ = 4.5 and E [X ] = µ = 1. The quantiles Y (p)
N for p = 0.05 and p = 0.95,
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Figure 2.4: Effect of σ on Urban Productivity Per Capita in Null Model. In this Simulations, the Populations

Are the Real Populations of U.S. Metropolitan and Micropolitan Statistical Areas in the Year 2000. The

Parameter a is Changed so that E [X ] is Fixed for All Cities and is Equal to the Productivity Per Capita Over

All Urban Areas (Black Dashed Line). The Increasing Productivity Per Capita with Increasing Population

Size is Shown Using an Ordinary Least Square Regression Line of ln(YN/N) Against ln(N) (Purple Solid

Line).

defined such that

p = Pr
{

YN ≤ Y (p)
N

}
, (2.6)

scale as Y (0.05)
N ≈ µ−exp(a0 +a1 lnN) and Y (0.95)

N ≈ µ+exp(b0 +b1 lnN). Ordinary Least

Squares estimations of these parameters yield a0 = 3.123± 0.027, a1 = −0.263± 0.001,

b0 = 4.345±0.179, b1 =−0.305±0.009. With this we can calculate that the lower quantile

will reach the threshold µ−ε = 0.9 at around N ≈ 1×109, whereas the upper quantile will

reach the threshold µ + ε = 1.1 at around N ≈ 3× 109. In other words, we can be 90%

confident that our per capita estimation will be within an interval [µ − 0.1,µ + 0.1] for

populations in the order of billions (see fig. 2.6).
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Figure 2.5: Departure from the Law of Large Numbers for a Lognormal Distribution as the Intra-Variability

of the Components Within Cities Increases. Each Point in the Plot Shows the OLS Estimations of the Scal-

ing Exponent β Between Aggregate Output Y and Population Size N, for 895 Simulated Cities, for a Given

Value of the σ -Parameters of the Individuals’ Lognormal. As σ Increases, the Scaling Exponent also In-

creases, Showing Increasing Violations of the Law of Large Numbers. The Error Bars Represent the Standard

Deviation of the Estimate of β from the OLS Method.

This null model presents a naive view of a city, and its assumptions are unlikely to hold

in reality. On the one hand, the distribution of individuals’ productivity is unlikely to be

as fat-tailed as a lognormal with a parameter σ = 4.5, much less σ = 6.0, since this would

represent a distribution with gini coefficients larger than 99%, whereas data suggest that

real gini is around 60%. On the other hand, the distribution itself is likely to be different

across cities. The aim of the model, however, is not to model reality accurately, but rather

to motivate a different approach to studying productivity differentials across cities.

In the next sections we relax the assumption of the lognormal distribution in the null

model. And we present analytical results that establish how large must be N, in relation to

how fat-tailed the distribution of X1, . . . ,XN is, given a confidence level in our use of per

capita measures.
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Figure 2.6: Convergence to the Law of Large Numbers for a Lognormal L N (−4.52/2,4.52). Here, 1000

Partial Sums YN Were Simulated. In the Plot we Show the Convergence of YN/N to µ = 1. The Red Dashed

Lines Represent the 5% and 95% Quantiles, such that 90% of the 1000 Simulations Lie Between those Two

Lines. The Red Solid Line is the Arithmetic Average of All the 1000 Values of YN/N at Each Point N. The

Convergence is Very Slow.

2.4 Mathematical Statement of the Problem Regarding the Validity of Per Capita

Measures

Suppose we observe a city of (finite) population size N and total aggregate output YN

(e.g., total wealth or total number of patents produced). By definition, YN = ∑
N
i=1 Xi, where

X1,X2, . . . ,XN are the unobserved outputs of all the individuals living in the city. Assume

the variables of the individuals are a non-negative i.i.d. sequence of size N from an un-

known distribution with mean E [X ] = µ . The problem is to find the constraints on the

distribution of the individuals’ variables Xi such that taking a per capita transformation of

YN is “justified”. By justified we mean that there is a high probability, at least 1−α , that

µ− ε ≤ YN/N ≤ µ + ε , for a given small ε > 0. Mathematically,

Pr
{∣∣∣∣YN

N
−µ

∣∣∣∣≤ ε

}
≥ 1−α. (2.7)
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Note that equation (2.7) imposes some constraints on the moments of the distribution of

X .3

The question is: Given N, YN , 1 > α > 0 and ε > 0, what are the constraints on the

distribution of Xi’s under the condition in Equation (2.7)? Conversely, if we have knowl-

edge about the distribution of X (e.g., through some of its moments), what is the minimum

population size N∗min above which inequality (2.7) holds?

The convergence of YN/N to µ is guaranteed by the LLN for ‘large’ N. Different

distributions have different rates of convergence, however, and some can be very slow (e.g.,

fig. 2.6). As a consequence, how ‘large’ N should be depends critically on the lightness or

heaviness of the tail of the distribution of X . When Xi’s are lightly-tailed they do not differ

from each other substantially, they each contribute approximately equally to the sum YN ,

and the convergence is fast. In contrast, when they are heavy-tailed differences between the

Xi’s are large, the maximum MN = max{X1, . . . ,XN} among them can account for a large

fraction of the total sum, and the convergence is slow.4

Since cities typically have populations that are considered large (on the thousands and

up to tens of millions) a naive (and incorrect) answer to the question about the minimum N

above which we can feel confident of taking a per capita estimation, is to assume that the

variance v of yi is finite and then invoke the Central Limit Theorem (CLT). We would then

3In appendix B we state an interesting question that arises from the analysis in this chapter. Namely, what

would be Markov’s inequality analogue for a random variable X in the situation when we have an estimation

of E [X ] only? A similar question was posed by Saw et al. (1984) for Chebyshev’s inequality.
4This is specifically captured by the subexponential family of distributions. See Embrechts et al. (1997).
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be inclined to say that YN/N ∼N (µ,v/N), and thus

Pr
{∣∣∣∣YN

N
−µ

∣∣∣∣≤ ε

}
= Pr

{
YN
N −µ√

v/N
≤
√

N
v

ε

}

−Pr

{
YN
N −µ√

v/N
≤−

√
N
v

ε

}
,

≈ 2Φ

(√
N
v

ε

)
−1, (2.8)

where Φ(z) is the standard normal cumulative distribution function (cdf). For α = 0.01

and ε = 0.1
√

v, inequality (2.7) is met for N ≥ 385. Assuming this argument is correct,

per capita measures are fully justified, since cities typically have more than 385 individuals.

The problem is, however, that the convergence of the CLT represented by the approximation

Pr
{
(YN/N−µ)

√
N/v≤ z

}
≈ Φ(z) may not be uniform in z, and even if it is, it may not

be fast enough. Uniform convergence in z is met when the third moment of yi’s exists and

is finite5. In this case, the rate of convergence is of the order O(1/
√

N). But for large N the

term Φ(
√

N/vε) ∼ N−1/2e−Nε2/(2v) and, as a consequence, the Gaussian approximation

can largely underestimate the probability of large deviations of YN/N from the per capita

mean µ .

2.5 Analytical Results

The previous sections presented some numerical examples of how the interpretations of

per capita quantities can provide misleading information about the mean of a distribution,

and how violations of the LLN create an interesting systemic behavior whereby produc-

tivity scales superlinearly with population size. Here we present some analytical results to

understand the scaling behavior, and the interplay between population size and the broad-

ness of the distribution under a given confidence our per capita estimations.

5See Berry-Esseen Theorem, Shiryaev, 1995
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2.5.1 Relationship Between Intravariability and Scaling

Intuitively, the behavior displayed in figs. 2.3, 2.4, and 2.5 can be understood from

realizing that equation (2.4) can be written as

pX(x) =C
(

x
x0

)−τ(x)−1

, (2.9)

where x0 = ea, τ(x) = ln(x/x0)/(2σ2), and C =
(
2πσ2x2

0
)−1/2 is a normalization constant

(Montroll and Shlesinger, 1982).

The exponent τ(X) is a random variable normally distributed N (0,1/(4σ2)). As σ

increases, τ(X) tends to zero, and a lognormal resembles more and more a Pareto distribu-

tion like equation (2.2), with exponent τ → 0. Thus, we should not be surprised to observe

Lévy-type behavior for finite values of N. This behavior can be regarded as a truncated

Lévy Flight (Mantegna and Stanley, 1994), which means that even though equation (2.4)

has all its moments finite, a finite sum of random variables resembles the Lévy Case pre-

sented in the previous section for small value of N.

Romeo et al. (2003) have shown that when pX(x) is a heavy-tail lognormal distribution

L N (a,σ2) with σ ≥ 1, the convergence of the Law of Large Numbers can indeed be very

slow.6 They show that the typical (i.e., most probable) value Y t
N of the sum in equation (2.5)

can scale more than proportionately with the number of summands, for some finite range

of N. That is, Y t
N ∝ Nβ , with β > 1.

6Still, since all the moments of a lognormal distribution are finite, the Law of Large Numbers dictates that

as N goes to infinity then YN/N→ µ = ea+σ2/2. That is, the typical value will eventually scale proportionately

with N.
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2.5.2 Constraints on the Population Size

The mathematical results we use here to understand the interplay between the moments

of a distribution and the sample size required to assess the convergence to the LLN are the

bounds on probabilities that the moments impose.

Recall that we want equation (2.7) to tell us how large N should be depending the char-

acteristics of the distribution of X1, . . . ,XN . If E [X r
i ] < ∞ for some r ≥ 2 we can combine

Markov’s and Rosenthal’s inequalities to relate equation (2.7) with E [X r
i ] (see appendix E

for the details of this derivation). This yields[
αεr

c(r)

]
Nr−1 ≥ E|X1−µ|r +

(
Var[X1]

N

)r/2

, (2.10)

for some constant c(r) (see Ibragimov and Sharakhmetov, 2001, 2002 for the values of this

constant).

Equation (2.10) establishes an interplay between N and the moments of the individual

random variables Xi in the population, given a confidence 1−α that our per capita measure

YN/N is within an ε from the population mean µ . This inequality, however, is not the

sharpest possible. The reason is because Markov’s inequality is not a sharp inequality. In

spite of this, it does give us an indication of how N must scale. In this condition r is a free

parameter. The best bound is for some value of r∗ ≥ 2:

N∗min ∼
(

c(r∗)
αεr∗

) 1
r∗−1
[

E|X1−µ|r
∗
+

(
Var[X1]

N∗min

)r∗/2
] 1

r∗−1

. (2.11)

Let us apply equation (2.10) to our null model. First, we must recall that the moments

of a lognormal distribution L N (a,σ2) are given as

E
[
Xk
]
= eka+k2σ2/2. (2.12)

Thus, in a lognormal distribution the moments increase exponentially with the square of the

moment order k. Given this, the best bound in equation (2.10) will be for r∗ = 2 (according
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to Ibragimov and Sharakhmetov, 2002, c(2) = 1). Taking α = 0.1, ε = 0.1, µ = 1, σ = 4.5,

we get that

0.001 N ≥ 6.23×108
(

1+
1
N

)
. (2.13)

We find that N∗min ≈ 6.23× 1011 is the minimum value that fulfills the condition. This

is larger by two orders of magnitude than the value we found according to the numerical

simulations in fig. 2.6 because of the aforementioned reasons. Yet, it highlights once more

the effect of large heterogeneities in the validity of per capita measures.

2.6 Summary and Discussion

The motivation for this chapter started with the question about the causes of the wide

differentials in per capita productivity across urban areas in the U.S., as shown in fig. 2.1.

In particular, two stylized facts stood out: (i) a slight, yet statistically significant, increase

in the average per capita productivity with population size, and (ii) a wide variance around

this average. Two different, but not incompatible, interpretations about the root causes of

these two observations were mentioned.

In the conventional interpretation, some factors of production, yet to be discovered,

would account for the wide differences in productivity per capita. The slight effect of

population size could be either due to an agglomeration effect, or it could also be that

population size stands as a confounding variable of another effect that is stronger in larger

cities than in smaller ones, as argued by Shalizi (2011).

In contrast, we provided an alternative interpretation in which the wide fluctuations

could be due to an underlying stochasticity in the process of production in cities. Features

(i) and (ii) can arise, for example, from the interplay between a broad heterogeneity in the

productivity of individuals and the finiteness of cities. Following this latter interpretation,

we introduced a null model of an urban system based on the assumption that individual

productivity was independently drawn from the same lognormal distribution for all indi-

34



viduals across all cities. This null model helped us prove the point that a simple stochastic

model of a city can reproduce the qualitative features of fig. 2.1.

The null model showed that when the Law of Large Numbers is violated the cross sec-

tion of a finite realization of cities displays a superlinear relation between total productivity

and population size. In the notation of linear regression models, if y1,y2, . . . ,ym are m

realizations of the random variable YN for different N taken from {n1,n2, . . . ,nm}, then

ŷi ∝ nβ

i , for i = {1, . . . ,m}, (2.14)

where the hat symbol ̂ means the estimated value. Equation (2.14) is only observed

when the city sizes are small relative to a number that defines the region of convergence

of the LLN. In other words, it holds when max{n1,n2, . . . ,nm} < N∗min, for some value

N∗min determined by the distribution describing the productivity of individuals, given by

equation (2.11).

This all means that, methodologically, when there are broad inequalities and sizes are

small (in the order of millions, perhaps) per capita transformations can give misleading

information about the average individual productivity. Larger places can be more produc-

tive in per capita terms than smaller places, even when intrinsically they are not. And this

means that, in our null model, population size is not just a parameter to control for size.

Rather, population size is the variable that determines the superlinear growth of the aggre-

gate productivity, not of the individual productivities. If in complex systems “the whole is

more than the sum of the parts”, in our null model, “the whole is typically more than the

sum of the expected mean of the parts”.

We did not derive the null model from economic principles. There are, however, sev-

eral models to generate fat-tailed distributions of productivity. In appendix D, for example,

we describe a simple stochastic model that can generate a variety of fat-tailed distributions

of productivity based on the so-called Kesten process. Banerjee and Yakovenko (2010)
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have developed a model that generates a distribution of income that is exponential in the

body and decays as a power-law in the tail. The assumption that the distribution of human

productivity is lognormal, moreover, has empirical support (see Kleiber and Kotz, 2003,

pp. 126–130). In the context of scientific output, one of the first to recognize a lognor-

mal distribution describing the productivity of individuals was Shockley (1957). Shockley

also provided some hypothesized mechanisms to explain the lognormality of productiv-

ity. Some years before, similar arguments about productivity were given by Roy (1950),

although more intuitive and from an economic point of view. Shockley, Roy, and others

(Aitchison and Brown, 1957), all invoke a multiplicative stochastic process determining

socio-economic quantities. Hence, in the process of production, several substasks need

to be achieved in conjunction, and depend on workers having different skills that also act

multiplicatively. As a consequence, productivity results in a lognormal distribution as a

consequence of applying the central limit theorem to the logarithms of the random vari-

ables representing each substep in the process (see Kleiber and Kotz, 2003 for other distri-

butions). The lognormal distribution is going to prove important in subsequent chapters, in

which suggestions that production at the level of the whole city will emerge.

A strong assumption of the null model is that the production process occurs solely at

the level of individuals and independently of one another. Even though one can argue that

the broad aspect of the lognormal distribution of productivities is, in effect, a result of

interaction effects between individuals, this argument goes against the assumption of inde-

pendence. If fact, cities are essentially characterized by their tight web of interconnected

elements (Bettencourt, 2013). We should expect this interaction to correlate the productiv-

ity of individuals. As a result, it is more reasonable to think that the production process

occurs at higher levels of organization, such as small groups of people, universities, firms,

industrial conglomerates, and even cities as a whole. In these conditions, one could still
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observe ŶN ∝ Nβ at the level of cities without a violation of the law of large numbers. Yet,

the null model presented here is not entirely incompatible with this.

In cities, where interaction effects are strong and broad heterogeneities are the norm,

scaling relationships of total productivity with population size can thus arise from two

separate effects: one in which most individuals produce more on average by virtue of inter-

acting in groups (e.g., agglomeration economies), and another in which a single individual

produces a significant share of the total production of a city. We could label them as the

“Jacobs” and “Edison” effects, respectively, given what Jane Jacobs wrote about the ben-

efits of diverse human agglomerations, and given the productivity of Thomas A. Edison

as a prolific inventor who must have raised significantly the per capita productivity of the

former city of Menlo Park in New Jersey7, with his laboratories.

Patents is precisely an interesting case in which both effects might be present and,

more importantly, measurable. Recall that in fig. 2.3 we were able to reproduce the scaling

exponent of patent applications with population size in U.S. Metropolitan and Micropolitan

Statistical Areas in the year 2000. We tuned the parameter σ of the lognormal distribution

to σ = 6.0 and we generated the scaling exponent β = 1.37 that is empirically observed.

But there are other possibilities of explaining fig. 2.3. Namely, we can decompose the

exponent as:

ŷi ∝ n1+δ+η

i . (2.15)

The exponent δ could come from a Jacobs effect, which urban scaling theory predicts

δ = 1/6 (Bettencourt, 2013), and the remaining η ≈ 0.20 could be explained, possibly, by

7The name was changed to Edison in 1954 in honor to the inventor.
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an Edison effect from a lognormal distribution with σ ≈ 4.7 (see fig. 2.5).8 Future work is

needed to disentangle these effects.

Our null model also generates large fluctuations around equation (2.14), which qualita-

tively match the fluctuations observed in fig. 2.1 and fig. 2.2. This result is not surprising

since the null model is set to work outside the range of validity of the LLN, and thus large

fluctuations are expected. But for these same reasons, it is a non-trivial problem to analyti-

cally describe these fluctuations. The question here is what is the probability distribution of

the random variable YN = ∑
N
i=1 Xi, for a fixed N, when Xi ∼L N (a,σ2) are i.i.d. random

variables. It is an open problem with important applications in other fields such as engineer-

ing, and it has received much attention in the literature (Szyszkowicz and Yanikomeroglu,

2009; Mehta et al., 2007; Beaulieu et al., 1995). Yet, no closed-form is known for even the

simplest case of N = 2.9

2.7 Concluding Remarks

In this chapter, we provided a set of computational and mathematical results concerning

the statistics of productivity measures. In particular, we showed that the assumptions be-

8Bettencourt et al. (2007b) show that the productivity per inventor does not increase with population size.

This does not invalidate the hypothesis in equation (2.15) since we can view the production process occurring

at a higher organizational level. In that case N stands not as the number of people, but as the number of

higher-level groups of production in a city, such as firms and universities, and the random variable X would

stand as the number of inventors in each group. In this way, the aggregate number of inventors per city YN

would grow superlinearly with population size, if the number of firms and universities are proportional to the

number of people.
9We know, however, the two boundary conditions:

YN

N
∼


L N

(
a,σ2

)
for N = 1,

N
(

µ,(eσ2 −1)µ2
)

for N→ ∞,

(2.16)

where µ = ea+σ2/2.
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hind uses of per capita measures might not hold and that aggregate measures of output are

preferred, depending on the interplay between city sizes and the distribution of individual

productivities. Moreover, we showed that this interplay determines the overall statistical

properties of the aggregate output. Hence, studies of the statistical properties of aggregate

output must be carried out if our aim is to understand the mechanisms generating wealth.

Our present study also highlights the importance of understanding the statistical prop-

erties that describe individuals within cities. Social systems, where interaction of a finite

number of elements is the defining factor, have been conspicuous in displaying broad and

heavy-tailed distributions, as opposed to narrow and thin-tailed distributions. This het-

erogeneity and the inequalities that it translates to when speaking of productivity, wages,

income, and wealth has consequences for the welfare of society. But as we have shown

here, it can determine the overall profile of productivity of a whole urban system of cities.

Note: the recent article by Sornette et al. (2014) examined some ideas similar the ones

mentioned in this chapter.
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Chapter 3

THE STATISTICS OF URBAN SCALING AND THEIR CONNECTION TO ZIPF’S

LAW

As was shown in the previous chapter, distributional considerations regarding aggre-

gate urban metrics are important both for the understanding of what occurs within cities

as for the understanding of the urban system as a whole. However, the statistics of urban

indicators have not been analyzed in detail in previous studies, raising important questions

about the full characterization of urban properties and how scaling relations may emerge

in these larger contexts. Here, we build a self-consistent statistical framework that char-

acterizes the joint probability distributions of urban indicators and city population sizes

across an urban system. To develop this framework empirically we use one of the most

granular and stochastic urban indicators available, specifically measuring homicides in

cities of Brazil, Colombia and Mexico, three nations with high and fast changing rates

of violent crime. We use these data to derive the conditional probability of the number

of homicides per year given the population size of a city. To do this we use Bayes’ rule

together with the estimated conditional probability of city size given their number of homi-

cides and the distribution of total homicides. We then show that scaling laws emerge as

expectation values of these conditional statistics. Knowledge of these distributions implies,

in turn, a relationship between scaling and population size distribution exponents that can

be used to predict Zipf’s exponent from urban indicator statistics. Our results also suggest

how a general statistical theory of urban indicators may be constructed from the stochastic
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dynamics of social interaction processes in cities.1

3.1 Introduction

The search for a general multidisciplinary science of cities is a fundamental scientific

problem with strong roots in economics (Fujita et al., 2001; O’Sullivan, 2006), sociology

(Fischer, 1984; Flanagan, 2010; Mumford, 1961), urban planning and architecture (Bacon,

1976; Hall, 1976). As human populations become increasingly urban the quantification of

general insights and solutions that transcend each particular place is increasingly neces-

sary and would have important consequences for our fundamental understanding of human

societies and for urban planning and policy (Bettencourt and West, 2010).

Cities should be regarded primarily as dynamical social networks, constantly changing

in terms of their composition and interactions. Consequently, urban indicators, denoted by

Y , and population N, should be treated in general as stochastic variables. More specifically,

there are practical circumstances when a full statistical approach to urban quantities be-

comes necessary. For example, a statistical treatment of urban indicators is essential when

average characterizations is insufficient because of the granularity that arises when dealing

with small integer numbers in Y (or in N). In such extreme regimes we may investigate if

and to what extent urban scaling laws apply and how they may emerge in the limit of large

numbers, when Y can be thought of as an effectively continuous variable.

In order to probe urban indicators that show granularity and a large level of temporal

and geographic variation we analyze here data on annual homicides in cities of three Latin

1This chapter was published (Gomez-Lievano et al., 2012) in collaboration with Dr. Hyejin Youn and

Professor Luı́s M.A. Bettencourt of the Santa Fe Institute. We acknowledge José Lobo and Geoffrey West for

discussions and for comments on the manuscript. We thank Diego Valle for data on homicides for Mexican

municipalities and for useful discussions. We also acknowledge Jesse Taylor for helpful comments and

suggestions, and Maria Jose Uribe for discussions and for providing us help with the Colombian data.

41



American countries over a several year period during which national homicide rates have

varied substantially. We analyze data from three of the largest nations in Latin America,

presently showing some of the highest homicide rates in the world: Brazil, Colombia and

Mexico, for which data are available at the municipal level.

The number of homicides is a quantity that is widely available at the local level in

developed and developing nations. It is thought generally to be reliably reported, notwith-

standing some important caveats (Valle-Jones, 2011). For these reasons, we use the annual

number of homicides in Latin American cities to develop a statistical approach to urban

scaling.

Homicides, as the ultimate expression of violence in human societies, are a widely

investigated quantity (The World Bank, 2011a,b). Many reasons have been advocated for

the rise and fall of homicides in cities throughout the world, especially in the US and

Europe (Pinker, 2011). Here it is not our intention to distinguish between these ideas or

propose new ones, but to determine general characteristics of the statistics of homicides

in connection with the population size of a city. More specifically, our main objective

is to establish general properties of the statistics of urban indicators in the limit of high

granularity and to investigate if and how urban scaling laws emerge and are related to

Zipf’s law for the population size of cities. We expect that such insights should extend to

other urban indicators and shed some light on a full statistical theory of cities in terms of

their quantitative observable properties.

In the next section we discuss some of the characteristics of the data and our main for-

mal objective, the estimation of the conditional probability density PY |N(y|n) for a particular

realization Y in a city with population N. Because no two cities have the same population

direct estimation of this probability is impractical so we exploit Bayes’ rule to compute in-

stead PN|Y (n|y) and PY (y). We describe the statistical properties of these two distributions

and then derive a closed form for PY |N(y|n). We then show that scaling laws emerge as
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the expectation value of Y given N and how knowledge of the conditional distributions and

of PY (y) lead to Zipf’s law for the size distribution of cities. Finally, we discuss several

qualifications and generalizations of these results and some of their general implications.

3.2 Results

3.2.1 Scaling Relations and Units of Analysis

Bettencourt et al. (2007a, 2010) have recently shown that many urban properties Yi vary,

on average, with city population size Ni according to a scaling relation

Yi(t) = Y0(t) Ni(t)β , (3.1)

where the subscript i refers to a particular city within an urban system at time t, Y0(t) sets the

baseline value of Y for the urban system and the exponent β measures the average relative

change in Y with N, β = (∆ lnY )/(∆ lnN). In particular, for socioeconomic quantities such

as urban GDP, wages or violent crime β is typically superlinear (β > 1), expressing an

average per capita increase in these quantities with city size N. Here we go beyond mean

expectations to show how equation (3.1) emerges statistically.

We have also observed that for US metropolitan areas many urban quantities vary only

slowly, with most change being due to the temporal variation of Y0 and to the dynamics

of population change. This has the consequence that deviations from average scaling—for

example in economic quantities or measures of innovation—tend to persist, and sometimes

be reinforced, for several decades (Bettencourt et al., 2010). Under these circumstances

it becomes difficult to observe systematic variations in the statistics of urban metrics, pre-

cluding us from eventually establishing the properties of their underlying processes.

To address these points, we introduce here new extensive data sets for homicides in

three fast evolving (and developing) nations: Brazil, Colombia and Mexico. These nations

are presently among the most violent in the world with registered homicide rates greater
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than 15 per 100,000 inhabitants, see The World Bank (2011a,b). Their homicide rates

have, in addition, experienced substantial changes over time, both at the national level and

in some particular cities. In all three cases the rise in violence, especially in particular

cities, has become a major impediment to national economic development and a challenge

to international security. Changes in crime rates in these nations, as elsewhere, have been

attributed to new initiatives to fight organized crime (Goertzel and Kahn, 2009) or to the rise

of several organized crime groups and to ‘wars’ between them (Gaviria, 2000). Although

these and other explanations for the variation of crime in cities have been advanced and

are widely discussed in the literature, the evaluation of their relative merits requires, in our

opinion, improved statistical models, that quantify and specify the nature of fluctuations

and go beyond average rates.

In Brazil, Colombia and Mexico the smallest spatial unit for which data are available is

the municipality (municipio). Municipios are defined as the smallest administrative units

with a local government. Because municipalities partition the entire national territory, their

interpretation as urban units is flawed, just as it would be to assume that each county in the

US, for example, is a city. Most municipalities consist, in fact, of several human settlements

over extensive rural areas. This introduces a limitation in the resolution at the smallest

population scales. At the larger population scales we can address this issue because large

functional cities (metropolitan areas) are made up of a set of municipalities. Thus, bearing

in mind these caveats, we adopt a definition of urban units in terms of metropolitan areas

for which an official definition exists, plus the remaining non-metropolitan municipalities.

Data sources, definitions and more details are provided in the Methods section.

We motivate the need for our statistical study by displaying in fig. 3.1 the scaling of

total homicides versus population size over a single year. The solid line fits the scaling of

homicides for metropolitan areas only. Large differences are displayed between municipal-

ities, and our goal is to characterize these fluctuations in a complete framework. We will
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not discuss the specificities of urban homicides but their general statistical nature, and their

relation to scaling and Zipf’s law.

Figure 3.1: Annual Number of Homicides in Cities of Colombia, Mexico and Brazil Versus Population Size

(2007). Large Cities Are Defined in Terms of Metropolitan Areas which Are Aggregations of Municipalities

(Red Circles) While Non-Metropolitan Municipalities Are Shown Separately (Green Squares). The Solid

Blue Line Fits only the Scaling of Homicides for Metropolitan Areas. Large Variations, Especially Among

the Smaller Population Units, and the Fact that Many Municipalities Have Y = 0 (Not Shown) Prevent a

Direct Scaling Analysis. However, it is Possible to Analyze the Data Consistently Through the Estimation of

Conditional Probabilities.

3.2.2 Bayesian Approach to the Statistics of Urban Indicators

Equation (3.1) is an average statement that cannot be obeyed exactly in every instance.

This is not only because all cities have specific local characteristics and urban indicators

fluctuate over time but, more fundamentally, because a continuous scaling relation must

break down in the limit of small discrete numbers. The correct statement must then be for-

mulated in probabilistic terms. To do this we think of both Y and N as stochastic variables,

and of their values at each particular city and time as statistical realizations. We can then

estimate their probability distributions.
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This problem is specified in terms of the conditional probability distribution function

of Y = y, given a city of population N = n, PY |N(y|n). We use Bayes’ rule

PY |N(y|n) =
PN|Y (n|y) PY (y)

PN(n)
, (3.2)

to compute it, given knowledge of the probability distribution PY (y) of homicides in cities

regardless of their population, and the conditional probability distribution PN|Y (n|y) for the

population size of cities with a given number of homicides. The denominator is a constant

in y and can be expressed as the trace of the numerator over all values of Y . We will return

to this point below as PN(n) is Zipf’s probability density function for city population sizes.

The reason to estimate PY |N(y|n) indirectly is motivated primarily by practical consid-

erations. To estimate PY |N(y|n) directly we would have to aggregate cities of similar size

together into arbitrary discrete size intervals (binning), potentially introducing errors and

leading to several additional complications. To avoid this, we exploit to our advantage

the granularity of the data as there are substantial numbers of cities with Y = 0,1,2,3, . . .

leading naturally to estimates of PN|Y (n|y).

3.2.3 Estimating the Distribution of Total Urban Homicides

The distribution of total homicides in cities PY (y) must reflect the fact that urban proper-

ties change (super)extensively with population and that there are cities with widely varying

sizes. As such we should expect PY (y) to be a broad distribution. Because of these general

facts, power-law probability densities (Zipf or Pareto distributions), are common among

urban metrics. More specifically, these distributions account for the fact that a small num-

ber of cities are responsible for most homicides and that a large number of cities display

only a few. In Mexico, for example, approximately 60% of homicides come from 2% of

cities! Similar numbers characterize Colombia and Brazil for the years studied.
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In practice, we adopt a common procedure of plotting the complementary cumulative

distribution function rather than the probability density function, which avoids the noisy

character of the tail for large cities.

Figure 3.2: Cumulative Normalized Distributions of Homicides in Colombia, Mexico and Brazil (2007) Are

Well Described by Power-Law Distributions. Here We Plot Not the Density Function but the Complementary

Cumulative Distribution to Attenuate the Tail Fluctuations and Ease Visual Interpretation. Best Fits (Dashed

Red Line) of the Form P(Y ≥ y) = Cy−τ+1 Were Estimated Using the Procedure in Clauset et al. (2009) to

the Density Function (See Methods Section). Standard Errors Are Reported in Parenthesis. The Solid Blue

Line Shows the Minimum Value of Y for which a Power-Law Fit Holds. While the Distribution of Total

Homicides is Scale Invariant, this is the Result of Tracing More Predictable Conditional Distributions for

Each City Over a Broad Distribution of City Sizes (See Text).

The empirical cumulative distributions of homicides for the year 2007 in Colombia,

Mexico and Brazil are shown in fig. 3.2. These distributions appear very similar, showing a

heavy tail for several decades and an effective lower cutoff for small values of Y . We were

unable to reject power-law fits using the procedure of Clauset et al. (2009). We assumed

the functional form of PY (y) to be

PY (y) =
(y+ k)−τ

ς(τ,k)
, y ∈ N, (3.3)
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where τ > 0 is the power-law exponent and k is a positive real number, which allows PY (y)

to remain analytic as y→ 0. Here

ς(τ,k) =
∞

∑
y=0

(y+ k)−τ (3.4)

is the generalized or Hurwitz zeta function Olver et al. (2010), which ensures the normal-

ization of PY (y) as a discrete variable.

3.2.4 Estimating PN|Y (n|y) and Deriving PY |N(y|n)

To calculate PN|Y (n|y) we fix the value of Y = y and estimate the probability distri-

bution over population. Figure 3.3 shows the histograms of frequencies of homicides for

Colombia, Mexico and Brazil, for a range of Y . Note that N in the x-axis is plotted on a

logarithmic scale (ln(N)). These figures give us an impression of what type of probability

distribution describes the data. We observe that all distributions, at each value of Y , show

a distinct peak with definite mean and variance. The null hypothesis of a Poisson distribu-

tion was rejected with high confidence by a maximum likelihood method (see appendix H).

Instead, these are well fit in terms of a lognormal distribution:

PN|Y (n|y) =
1

n
√

2πσ2
y

e
− (lnn−µy)

2

2σ2y , (3.5)

where the subscript in µy and σy indicates that these parameters are in general functions of

y.

The shape of this distribution, which Bettencourt et al. (2010) had noted more implic-

itly for other quantities, is perhaps curious, first, because it does not conform to the more

classic distributions, such as the Gaussian or Poisson, despite the fact we are dealing with

count data that are traditionally related to neutral processes like the law of rare events (see

Frank, 2009). And second, because it states that urban metrics are much more predictable

given other variables (here simply population size) than a Zipfian distribution might have
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Figure 3.3: Normalized Frequency Histograms of the Logarithm of City Population for Varying Number

of Observed Homicides Y . Each Column Corresponds to a Different Country and Each Row, From Top to

Bottom, Corresponds to the Values y = 0,5 and 10 Homicides Per Year. A Lognormal Distribution (Notice

the x-axis Is Expressed in Terms of lnN) Is Shown as a Solid Red Line, with Parameters Obtained Via

Maximum Likelihood Estimation.

lead us to believe. Thus, effectively a Zipf distribution blurs fairly predictable quantities,

given N, over a broad range of population sizes. Seen from the opposite perspective, log-

normal distributions are what we observe if we look at the variables described by a Zipf

distribution through a “lens” that allows us to distinguish its many (and widely varying in

size) component units (cities).

One drawback of the lognormal distribution is that both N and Y are in reality discrete

random variables, whereas the lognormal describes typically a continuous stochastic vari-
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able. (Discrete lognormal distributions are sometimes used in the statistics literature, see

Anscombe, 1950 and references therein). In spite of this property, it is still reasonable to

assume that the variation in population is approximately continuous as the minimal values

of N are typically on the order of thousands.

The mean and variance are given by:

〈N〉y = eµy+σ2
y /2 (3.6)

(∆Ny)
2 = (eσ2

y −1)e2µy+σ2
y . (3.7)

The maximum likelihood estimators of the lognormal parameters are:

µ̂y =
1
ny

∑
i∈Sy

lnNi (3.8)

σ̂2
y =

1
ny

∑
i∈Sy

(lnNi− µ̂y)
2, (3.9)

where ny is the number of cities in the set Sy with y homicides.

If the normal distribution holds in terms the logarithmic variables of population given

different values of Y , we can collapse the different histograms of fig. 3.3 by standardizing

log-variables. We achieve this by calculating the maximum likelihood estimators of the

mean and variance for every value of Y , and then plotting in the same histogram the dis-

tribution for several values of Y . Figure 3.4 shows these standardized distributions. This

procedure has its limitations due to the fact that as we increase Y , the number of cities de-

creases, until there is only one city with given Y and N and statistical estimation becomes

impossible. Conversely, it has the advantage that the shape of the distribution PN|Y (n|y) for

several values of Y can be displayed in one single figure.

We can now estimate the parameters of equation (3.5) using section 3.2.4 and sec-

tion 3.2.4, and plot σ̂2
y (see fig. 3.5) and µ̂y (see fig. 3.6) versus Y , to infer their functional

Y -dependence.
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Figure 3.4: Collapsed Histograms of PN|Y (n|y) Across Values of Y in 2007. Lognormal Probability Density

Functions for the Three Nations Are Shown as Solid Red Lines. This Shows that Power-Law Distributions

Describing Total Homicides in the Urban Systems Have in Fact More Predictable Statistics When Condi-

tioned on City Population Size.

Figure 3.5: Estimates of σ2
y (Via Maximum Likelihood) for Different Values of Y ∈{0, . . . ,29}, for Colombia,

Mexico, and Brazil. A Different Curve Was Constructed for Every Year of the Analysis (See Methods). The

Plots Show the Average Over Several Years. Error Bars Represent One Standard Deviation Intervals (67%

Confidence Level). The Plots Show no Clear Systematic Y -Dependence of σ̂2
y . This Suggests, in Turn, that

Each Country has a Characteristic Variance of its Indicators Conditioned on Other Urban Quantities. In this

Respect, it is Interesting to Note the Similarities Between Colombia and Brazil.

The behavior of σ2
y shown in fig. 3.5 is stable and we will assume it to be constant

henceforth. Because of this we can reject other count models such as the Negative Bino-

mial, which is designed to model over-dispersed data. The curves shown in fig. 3.6 display

a logarithmic growth of µ̂y on y. The most general logarithmic function that can be fit to
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Figure 3.6: Estimates of µy (Via Maximum Likelihood) for Different Values of Y ∈ {0, . . . ,29}, for Colombia,

Mexico, and Brazil. A Different Curve Was Constructed for Every Year of the Analysis, and the Points Plotted

Are the Averages Over Several Years. The Error Bars Represent One Standard Deviation Intervals about the

Mean. Plots Show a Logarithmic Dependence on Y , from which a Scaling Relationship Emerges in Terms of

Expectation Values (See Text). Best Fits Were Obtained Using a Levenberg-Marquardt Algorithm, Weighting

Every Point by its Error (See Methods).

µ̂y (see fig. 3.6) is

µ̂y = f (y) = b ln(y+ r)+ lnA (3.10)

where r is a positive constant that allows the logarithm to remain finite (and positive) as

Y → 0 and A is a positive number. Below, the constant b will be identified with the scaling

exponent 1/β . This is the reason why the values of these parameters in fig. 3.1 and fig. 3.6

coincide. The rest of the paper rests on these two assumptions about the behavior of σ2
y and

µy, suggested by fig. 3.5 and fig. 3.6. For the fitting procedure of the remaining parameters

see the Methods section.

Finally, using equation (3.2), we derive the conditional probability function PY |N(y|n).

If equation (3.5) holds for all Y ≥ 0, using equation (3.3), we obtain

PY |N(y|n) ∝ (1/ỹ)exp

[
− 1

2σ2
y
(lnn−µy)

2 +(1− τ) ln ỹ

]
, (3.11)

where Ỹ ≡ Y + k.
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Using equation (3.10) to replace µy for µ̂y, we obtain

PY |N(y|n) ∝ (1/ỹ)exp

[
− 1

2σ2
y

(
(lnn− lnA (y∗)b )2 +2σ

2
y (τ−1) ln ỹ

)]
. (3.12)

We can expand the squared terms, the logarithms, group some of the terms, so this

equation transforms into:

PY |N(y|n) ∝ (1/ỹ)exp
[
− 1

2σ2
o

(
ln2 y∗−2 ln

(
(y∗)P

ỹσ2
o (τ−1)

)
+P2

)]
, (3.13)

where y∗ = y+ r, P = 1
b ln(n/A) and σo = (σy/b).

Now, recall that both r in y∗ = y+ r and k in ỹ = y+ k were introduced to account for

the limit when y→ 0. These constants generate the expected limits and prevent us from

dividing by zero in the power-law distribution and from taking the logarithm of zero in µ̂y.

There are no constraints that keep us from assuming them to be equal (and from considering

them to be small). Indeed, both introduce a characteristic scale which manifests itself as a

regime change in the scaling behavior when cities are very small and realizations of zero

homicides (or other discrete measures) begin to occur. Therefore, it is not unreasonable to

assume they are they same, thus Y ∗ ≈ Ỹ (see the Methods section for an estimation of k).

Under this assumption we can complete the square and compute the posterior distribution.

Realizing that PY |N(y|n) = P(Y ∗|N) because ∆Y ∗/∆Y = 1, and keeping only Y dependent

terms (the others will ultimately be absorbed by the normalization constant), we arrive at

PY ∗|N(y
∗|n) ∝ (1/y∗)exp

[
− 1

2σ2
o

(
lny∗− (P−σ

2
o (τ−1))

)2
]
, (3.14)

which is a lognormal distribution for Y ∗ given N = n, with parameters µn = P−σ2
o (τ−1)

and σn = σo. By expressing the distribution parameters in the original variables, and by

introducing the proper normalization constant, we finally obtain

PY ∗|N(y
∗|n) =

1

y∗
√

2πσ2
n

e
− (lny∗−µn)

2

2σ2n , (3.15)

µN =
1
b

ln
( n

A

)
−σ

2
n (τ−1) (3.16)

σ
2
n = σ

2
y /b2. (3.17)
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3.2.5 The Connection Between Lognormal Statistics, Urban Scaling and Zipf’s Law

These expressions connect the lognormal statistics of the conditional distribution PY |N(y|n)

with scaling and Zipf’s law for the size distribution of cities. As we show below this leads

to a relationship between scaling and Zipf’s exponents.

Determining these conditional distributions enables us to calculate their moments, such

as the mean and variance. We take equation (3.10) and section 3.2.4 to derive 〈N〉y and

〈Y 〉n explicitly in terms of y and n, that is:

〈Y + r〉n =

(
e(3/2−τ)σ2

n

Aβ

)
nβ (3.18)

〈N〉y = A eσ2
y /2 (y+ r)1/β (3.19)

where β = 1/b is recovered as the exponent of the scaling relation in equation (3.1). These

two expressions represent complementary scaling relations. Note that they are not identical

statistically as they express the expectation value of each variable in terms of a given value

of the other, not its mean.

Similarly, the standard deviations ∆Y ∗n and ∆Ny can be expressed as

∆Y ∗n = Σn nβ (3.20)

∆Ny = Σy (y+ r)1/β , (3.21)

where Σn and Σy are proportionality coefficients.

From the preceding sections it should already begin to be clear how the lognormal

distribution relates to Zipf’s law. We can show how a power-law distribution emerges by

deriving the probability distribution of N. In equation (3.2), PN(n) is called the “evidence”,

and acts in practice as a normalization constant. It can be calculated from knowledge of the

numerator as

PN(n) =
∞

∑
y∗=r

P(n|y∗)P(y∗)

∝ n−α , (3.22)
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which is a power-law distribution. It then follows that the various exponents are constrained

to obey the relationship (see Methods section)

β =
α−1
τ−1

. (3.23)

Thus, from this perspective Zipf’s law follows from PY (y) and the statistics of Y for cities

of a given size and the observation of scaling of its expectation value.

If superlinear scaling (β > 1) holds for some urban indicator Y , we can predict popula-

tion sizes to be power-law distributed with exponent α > τ , and vice versa if the scaling is

sublinear. If α ≈ 2 (unity in a rank-size plot) as has been observed for several urban sys-

tems (Soo, 2005), superlinear scaling means that τ < 2, and thus the quantity Y may lack

a definite mean and variance. In these cases, references to “average cities” have no sound

mathematical meaning. Note however that it is also possible that α > τ > 2 provided that

Zipf’s exponent is sufficiently larger than 2, as has been argued long ago by Mandelbrot

(Mandelbrot, 1961) in a different context. In general these properties can be used to con-

strain the value of Zipf’s exponent from the observation of the statistics of many different

urban indicators and knowledge of their average scaling properties.

3.3 Discussion

In this chapter we characterized the statistics of homicides — a highly variable and

granular metric — in three fast changing urban systems in Latin America. This analysis

allowed us to address the statistics of scaling laws under extreme conditions and investigate

how they emerge for noisy and granular variables within a larger probabilistic context.

We have found that homicides Y occurring in cities of Brazil, Colombia and Mexico all

follow statistics that are well described by lognormal distributions. These distributions are

parametrized by an expectation value that is population size dependent and a variance of

the log-variables that is not (or that at least can be assumed not to be, for the data analyzed
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here). In this context scaling laws emerge as the expectation value of Y as a function of N,

〈Y 〉(N)∼ Y0Nβ .

The allometric scaling relationship, when expressed in terms of logarithms, exposes the

issue that it cannot hold in the limit of Y or N going to zero (unless they do so together). We

have devoted particular attention to this regime and found that effectively annual homicide

rates saturate at a very small but non-zero value at sufficiently small N. In this sense true

scale invariance emerges only when Y � 0. A dual scaling law for 〈N〉(y) emerges from a

Bayesian inversion of the relationship for Y and we have shown that this - i.e. the estimation

of PN|Y (n|y) at small discrete Y - is often the most practical way to estimate PY |N(y|n). This

lead us in turn to the consideration and estimation of PY (y) - the distribution of the total

number of homicides across cities - which we found to have a Zipfian form. Because

these distributions can be used to derive Zipf’s law through marginalization, we obtained

a relationship between urban indicator statistics, urban scaling laws and Zipf’s distribution

in the form of a constraint between the scaling exponent and the Zipfian exponents for Y

and N.

Much effort has traditionally been devoted to model the broad distributions and lack

of characteristic scales displayed by urban systems (Simon, 1955; Gabaix, 1999; Saichev

et al., 2010). However, our results show that parts of the urban system manifest greater pre-

dictability than is usually recognized. Although non-broad distributions would be expected

to arise for many quantities when considering cities of fixed size, lognormal statistics are

special because they point to multiplicative processes. If these processes depend on the

structure of social interactions, lognormality then suggests that quantities should scale with

city size in non-trivial ways.

Furthermore, the consistency between lognormal statistics for individual cities and Zip-

fian distributions for the urban system, as well as scaling relations across city sizes, suggest

that local indicators are the result of self-consistent urban system dynamics and that these
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indicators are naturally bounded. Consequently, when considering goals for urban planning

it is important to think at once locally and at the level of the urban system. In this light,

on the one hand, questions about particular cities and the magnitude of their metrics may

not make much sense unless we take into account the whole urban system in which they

are embedded. On the other hand, characterizing urban systems only through power-law

distributions prevents us from observing finer quantitative patterns present locally. Sev-

eral mechanisms have been proposed for the emergence of lognormal (Sornette, 2006) and

power-law (Frank, 2009; Baek et al., 2011; Newman, 2005; Sornette, 2006) statistics, usu-

ally relying on multiplicative random processes (Montroll and Shlesinger, 1982; Redner,

1990). Population size dependent stochastic interaction processes within cities, which are

multiplicative, provide a natural setting to explain these observations and will be the focus

of future research.

Given the general implications of these results a few remaining issues and some caveats

are worth further discussion. First of all, we motivated the lognormal distribution as a good

general description of the data. However, the data may be compatible with other statistical

densities, specifically a Laplace distribution (which is also characterized by two parameters

a scaling mean and a fixed dispersion, see Bettencourt et al., 2010). We found no consistent

evidence in our empirical analysis that pointed conclusively to the need for these alternative

and potentially more complex statistical models, but such need may arise as larger datasets

are analyzed.

Second, one of our main results is the observation of deviations from scaling in the

limit Y → 0, where we are also dealing with small municipalities in terms of N. This

regime and its statistical treatment is fraught with empirical difficulties, including the fact

that we are then dealing predominantly with rural territories in which several small towns

are aggregated together as a municipality. Thus, these units are not true single cities. To

address this point more disaggregated data would be necessary to probe the behavior of Y
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in truly small towns. In this sense our parametrization of the several distributions through

the introduction of a saturating constant should be seen as provisional, and is in any case

not unique. Another issue, that becomes important for small cities, is the use of annual

homicides. If in reality the expected homicide rate vanishes only with vanishing population

size, but becomes very small in small towns then it will take on average a longer and longer

period of time for any homicides to be observed and any chosen time period will lead to an

underestimation of such a rate for a suitably small city. Thus, by making the time period

that defines the homicide rate longer we should see the saturating parameters decrease

and scale invariance be restored to smaller and smaller population scales. We probed this

regime empirically and indeed observed a systematic reduction in the size of cities with zero

homicides, but the full consideration of this question is complex and is beyond the current

analysis. The empirical and theoretical consideration and re-analysis of these issues may

become possible in the future and would be interesting to pursue in order to investigate the

limits of urban scaling in small population agglomerations. While it seems plausible to us

that a finite probability of violence exists in human communities of any size, the lower limit

may be difficult to probe in practice.

As they stand the present results suggest several interesting new questions for future

research. First, they provide a mesoscopic view of urban indicators and take a step in

suggesting the form of a statistical mechanics approach to universal aggregate properties of

cities, such as scaling laws and size distributions. Such an approach should lead to theory

and methods to bridge scales of analysis from individuals, through social and economic

organizations, to entire cities and urban systems.

Finally, it is interesting to briefly discuss the practical implications of the statistical

treatment of urban indicators developed here. Quantitative knowledge of the distribution of

indicators for a given population size allows us to make predictions e.g. for the homicide

rate of a particular place with quantified levels of uncertainty. The approach developed
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here takes into account only data aggregated over a time period, usually a year. However

we know in addition that there is also considerable predictability for urban indicators of the

same city across time. Thus, we expect that the future combination of these two elements

will yield a procedure to make better predictions of future indicators for specific places with

quantified uncertainty. This ability will also allow the detection of exceptional events as

statistical anomalies in urban indicators. We hope therefore that our growing quantitative

understanding of cities and urban systems throughout the world will provide the basis for

the development of a predictive science of cities that will help inform more effective policy

in an increasingly urbanized world.

3.4 Materials and Methods

Details about the data can be found in appendix A.

3.4.1 Power-Law Fits

Clauset et al. (2009) developed a methodology to estimate the parameters of a power-

law fit, and to calculate its associated goodness of fit. The function fitted is the pure power-

law

PY (y) =C
(

y
ymin

)−τ

, (3.24)

where C is the normalization constant. The distributions of homicides analyzed here were

fitted using this functional form and we were unable to reject the power-law fit. However,

the fit only holds for values of x ≥ xmin. Following Clauset et al. (2009), the estimated

p-values were p̂Col = 0.34±0.05, p̂Mex = 0.38±0.05 and p̂Bra = 0.73±0.05, which were

not sufficiently small for the power-law distribution to be rejected.
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Because we are interested in the regime of small numbers where the number of homi-

cides Y can be zero, we extend equation (3.24) to

PY (y) =
(y+ k)−τ

ς(τ,k)
, (3.25)

which converges to equation (3.24) for large y, but with the difference that now y can take

any non-negative value.

If we let Yi, i = 1, . . . ,n, be the observed annual number of homicides of each city.

Assuming independence, the log-likelihood of the data under equation (3.25) is

L (τ,k) =
n

∑
i=1

log
(
(Yi + k)−τ

ς(τ,k)

)
=−n log(ς(τ,k))− τ

n

∑
i=1

log(Yi + k). (3.26)

A numerical estimation of k and τ by setting ∂L /∂τ = 0 and ∂L /∂k = 0 to maximize

the likelihood function, yields

τ̂Col = 1.864 ; k̂Col = 1.904 ; p̂Col = 0.6566±0.005

τ̂Mex = 2.296 ; k̂Mex = 1.827 ; p̂Mex = 0.4373±0.005

τ̂Bra = 2.157 ; k̂Bra = 1.840 ; p̂Bra = 0.0220±0.005.

A rigorous procedure to estimate these parameters from the data, estimate the error and

determine its scaling properties is part of future work.

3.4.2 Lognormal Fits

We test the lognormal distribution as a description of PN|Y (n|y) by standardizing the

variables ln(N) for each given Y , and then showing a normal probability plot (or Q-Q plot)

in fig. 3.7. Departures from the lognormal distribution (a normal in logarithmic variables)

can be identified by departures from the straight line and are shown, in fig. 3.7, to be both

rare and small.
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Figure 3.7: Q-Q Plot of the Standardized Log-Variables of the Populations of the Cities for Several Values of

Y . This Shows that a Lognormal Distribution is an Excellent Description of PN|Y (n|y), for the Three Nations,

Notwithstanding a Number of Small Exceptions at the Extremes (a Perfect Straight Line in the Dots Would

Correspond to an Exact Normal Distribution of Log-Populations).

3.4.3 Parameter Estimation of µy = f (y)

Maximum likelihood estimations of µy for the different values of y ∈ {0, . . . ,29}, for

Colombia, Mexico, and Brazil, are shown in fig. 3.6. We constructed a different curve µ̂y
(t)

for every year of the analysis, and plotted its average µ̂y over the set of annual estimates:

µ̂y =
1
T ∑

t∈T
µ̂y

(t), (3.27)

where T the number of years for which we have data, for each nation.

Error bars represent plus and minus one standard deviation about the average.

êrry =
1
T ∑

t∈T

(
µ̂y

(t)− µ̂y

)2
. (3.28)

The fits were performed using a Levenberg-Marquardt algorithm, which minimizes the

sum of least squares of a set of non-linear equations, weighting every point by its error.

The function to minimize with respect to vector parameter p = (p0, p1, p2) is

χ
2(p) =

(
µ̂y− f (y;p)

êrry

)2

, (3.29)
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where

f (y;p) =
1
p0

ln(y+ p1)+ p2 (3.30)

=
1
β

ln(y+ r)+ logA. (3.31)

3.4.4 Zipf’s Law Derivation

Here we give additional details of the calculations leading to section 3.2.5. First, we

write PN(n) in terms of PY (y∗) and PN|Y (n|y∗):

PN(n) =
∞

∑
y∗=r

P(n|y∗)P(y∗)

=
∞

∑
y∗=r

1

n
√

2πσ2
y∗

e
−(

lnn−µy∗)
2

2σ2
y∗

(y∗)−τ

ς(τ,k)
. (3.32)

For simplicity of notation, we drop the subscript in σy∗ , and we use the letter y, although

it is important to keep in mind that we are implicitly referring to y∗. Replacing the sum with

an integral and assuming r is sufficiently small that we can integrate over the whole range

of non-negative numbers, we obtain

PN(n) ∝
1
n

∫
∞

0

1
y

exp
[
− 1

2σ2

(
lnn− lnAy1/β

)2
− (τ−1) lny

]
dy

∝
1
n

∫
∞

0

1
y

exp
[
− 1

2β 2σ2

(
ln2 y−2lny

(
β ln

n
A
−β

2
σ

2(τ−1)
)
+β

2 ln2 n
A

)]
dy.

(3.33)

We can now complete the square and re-arrange terms to obtain

PN(n)∝

exp
(
−(τ−1) ln

( n
A

)β
+ β 2σ2

2 (τ−1)2
)

n

∫
∞

0

1
y

exp
[
− 1

2β 2σ2 (lny− f (n;θ))2
]

dy.

(3.34)

Now, we see that the term inside the integral is a lognormal distribution, integrated over its

entire domain. Consequently, the integral is a constant, regardless of the form of f (n;θ),
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where θ represent the parameters A,β ,σ and τ . Retaining only terms in n, we obtain

PN(n) ∝

exp
(
−(τ−1) lnnβ

)
n

∝ n−β (τ−1)−1, (3.35)

from which we finally see that

PN(n) ∝ n−α , (3.36)

with α = β (τ−1)+1, or

β =
α−1
τ−1

. (3.37)

This relationship can also be derived in a more straightforward way under the assump-

tions that i) a power-law distribution for Y (or N) holds and ii) the scaling relationship

Y ∝ Nβ holds exactly. Then, using the fact that PN(n) = PY (y)dy/dn, we obtain the same

relation between exponents. The derivation given above, however, does not assume an ex-

act expression in the form of Y = f (N), but rather a probabilistic relation between N and

Y , through the expectation value µY ∗ = ln
[
A(Y ∗)1/β

]
.

Figure 3.8 shows the cumulative empirical distributions of city populations.
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Figure 3.8: Cumulative Normalized Distributions of City Populations in Colombia, Mexico and Brazil (2007)

Fitted With Pure-Power-Law Distributions. Best Fits (Dashed Red Line) of the Form P(N ≥ x) = Cx−α+1

Were Estimated Using the Procedure in Clauset et al. (2009) to the Density Function. Not Disregarding the

Long-Held Debate about the City-Size Distribution, we Believe the fit to a Power-Law Distribution Stands as

a First Approximation Consistent with our Proposed Statistical Framework.
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Chapter 4

ARE THERE CONSTRAINTS ON CREATIVE AND INVENTIVE ACTIVITIES IN

URBAN AREAS?

A question in public policy is to what extent can the levels of inventive and creative ac-

tivities be increased in cities to enhance economic development. To reveal the constraints

on the processes that determine urban inventive and creative activities, we analyze the

lognormal probability distributions that describe the counts of inventors and creative em-

ployment conditioned on population size, and the unconditioned distribution of population

sizes of U.S. Metropolitan and Micropolitan Statistical Areas. This approach reveals some

of the characteristics of the processes that increase or decrease the levels of inventive and

creative activity and allows us to estimate the probabilistic constraints on the levels of such

activities in urban areas.1

4.1 Introduction

Innovation and knowledge creation are by now widely recognized to be the primary

drivers of economic growth and development (Weil, 2012). As Charles Jones points out

(Jones, 1995, p. 764), knowledge is simply the accumulation of ideas, and ideas are devel-

oped by individuals. Urban environments, with their agglomeration of interacting individ-

uals, have historically been the privileged setting for innovation (Hall, 1998). Specifically,

innovative, inventive and creative activities, which is to say, innovative, inventive and cre-

ative individuals, are concentrated in urban areas (Ó hUallacháin, 1999; Glaeser and Saiz,
1This work was done in collaboration with Professors Luı́s M. A. Bettencourt, Kevin Stolarick, Deborah

Strumsky, and José Lobo.
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2004; Bettencourt et al., 2007b). Much work has been undertaken to elucidate the factors

influencing the clustering of skilled individuals in urban areas (e.g., industry composi-

tion, presence of educational institutions, job opportunities, natural and cultural amenities,

etc., Glaeser and Saiz, 2004; Berry and Glaeser, 2005; Florida et al., 2008; Glaeser, 2011;

Miguélez and Moreno, 2013).

The most common methodological approach for these investigations has been the use

of multivariate regressions; these efforts have been successful in identifying many of the

determinants affecting the concentration of innovative (or inventive or creative) individuals

in urban areas. However, in the same way that the knowledge that human weight is a good

predictor for human height does not provide us with information about the probability, or

improbability, of observing a 3 meter-tall human being, previous studies about the agglom-

eration patterns of skilled and talented individuals do not informs us about the probability

of observing Boston’s creative and inventive levels, or San Jose’s, or Zanesville’s, or any

other urban area. The characterization of the probability distributions describing these lev-

els determines what we mean by the “probabilistic constraints” of creative and inventive

activities, and it further informs about some general characteristics of the generative pro-

cesses that determine those levels. Supplementing our multivariate regressions with explicit

calculations of the probabilistic constraints is vital if we want to have an understanding of

what is possible, and what can be changed, when implementing public policies.

In our approach, we echo Storper et al. (2012), who state that noisiness and stochasticity

are an inherent characteristic of urban dynamics. Given the social character of cities, and

the presumably large web of influences affecting the locational decisions and intellectual

activities of individuals, the processes underlying agglomeration are bound to be stochastic

in nature (Curry, 1964). The nature of these processes is largely defined by the manner

in which a multiplicity of factors come together, that is, how these factors aggregate, to

determine a stochastic outcome. Whether the aggregation is additive or multiplicative,
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corresponding to separate or interacting co-occurrence of factors, outcomes will display

different probability distributions. However, it can be argued that the behavior of a product

of random variables is considerably richer than that of a sum of random variables (Red-

ner, 1990) because it models interaction. The logic by which the mathematical operation

of multiplication represents interactivity is demonstrated in the functional form of a pro-

duction function or in the use of a multiplicative term in a regression equation to capture

interaction among two independent variables (Aiken and West, 1991). It is precisely the

nature of the stochastic aggregation which needs to be understood in order to assess the

efficacy of policy interventions that aim to stimulate the attraction and enhancement of cre-

ativity in urban areas. By considering the full extent of the aggregated stochasticity we

can specify the limits on the variability exhibited by urban areas with regards to their en-

dowments of creative resources. It turns out, how much more creative, or conversely, how

uncreative, any one urban area can be is constrained in a systematic way, given its popula-

tion size. And, although innovative activities are disproportionately located in larger cities,

population size itself shows statistical signatures of being constrained as cities become too

big.

Here we show that the urban variability in innovative (i.e., creative and inventive) indi-

viduals, once population size is controlled for, is well described by a lognormal distribution.

Characterizing this distribution informs us as to the limits of such variability – that is, how

much more creative or inventive can the very creative or inventive places be. Our results

suggests (i) that there is an underlying multiplicative stochastic process affecting the lev-

els of urban creative activity, (ii) that the number of determining factors involved is large,

and (iii) that there exist constraints on the variance of the logarithmic levels of inventive

and creative individuals. These constraints are a manifestation of the underlying generative

processes, which in turn is characterized through a probability distribution.
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Although the way the results are presented is novel, our conclusions are compatible

with previous studies in that we show that the differences between cities are structural

(i.e., multiplicative) (Muneepeerakul et al., 2013; Strumsky and Thill, 2013) and lead to

divergences between them (Ó hUallacháin, 1999; Berry and Glaeser, 2005). We present

the evidence in the language of probabilities which we argue advances our understanding

of how innovation in urban areas operates, and opens new avenues of research as well.

4.2 Research Design

In the absence of a clear, and measurable, definition of innovation we believe that a

broad statistical approach to proxy quantities is essential. Such an analysis takes as its

primary quantities, not the covariances between variables, but rather their statistical distri-

butions. The main justification for focusing on statistical distributions is that uncovering

them can provide insights into the underlying processes generating observables (Frank,

2009; Frank and Smith, 2011; Sornette, 2012), as well as the likelihood of observing any

given value. We investigate the probabilistic nature of the processes concentrating creative

activities in urban areas essentially in two ways. First, in the cross-sectional regression

log(Yi) = log(Y0) + β log(Ni) +
Aggregated effect

of all other factors
, (4.1)

where Yi represents the counts of skilled individuals and Ni the total population size of the

i-th urban area, we allow the error term to aggregate the effect of all the other factors af-

fecting the level of skilled individuals Yi. This is in contrast to the typical approach which

disaggregates the error term into several control, instrumental, and explanatory variables

(in order to minimize the residual variability). Instead, we characterize the probability dis-

tribution that describes these error terms, which is equivalent to studying the shape of the

probability function P(Y |N) (recall section 1.2). Second, we characterize the probability

distribution of population size P(N). In this way, using Bayes’ rule, the joint probability
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distribution P(Y,N) is estimated. We introduced this approach in chapter 3, and as was

mentioned in that chapter, it has already been pursued in similar contexts recently (Betten-

court et al., 2010; Gomez-Lievano et al., 2012), but here we analyze in more detail what the

shape of the distribution suggests about the constraints acting on our observables. These

constraints in turn are indicative of features of the processes determining the inventive and

creative profiles of urban areas that act across the whole urban system.

The decision to use population size N as the conditioning factor is widely adopted

in the literature, but is particularly relevant in our context since our proxy measures are

counts of people. For the sake of clarity, it is important to recall what our results in chap-

ter 2 were. Although the results applied to a simple null model of a city, two main points

were made that could apply to more complex situations. First, that power-law relations

between measures of total aggregate output and population size N were not spurious, and

in fact, emerged precisely because population sizes were not large enough to guarantee

convergence of the law of large numbers. And second, because of the latter, that per capita

measures should be avoided since their correct interpretation assumes specifically such

convergence. For purposes of our investigation, characterizing the probability distribution

of residuals, using aggregate measures of creative or inventive activity (e.g., counts of in-

ventors), as opposed to per capita measures (i.e., inventors per capita), makes no difference

since the choice only affects the β coefficient. Conceptual and probabilistic considera-

tions make the use of per capita measures far from an innocent choice, requiring further

assumptions whose consideration were analyzed in chapter 2.

4.2.1 Data and Definitions

We will refer to the “creative endowments” of a city as its creative class workers

(Florida, 2004) and inventors (i.e., authors of patents), and we will consider their counts
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as proxies for the creative and inventive activity in a city, although we will analyze each

measure separately and in parallel.

In this study, our spatial unit of analysis are the m = 938 U.S. metropolitan and mi-

cropolitan statistical areas.2 The number of such areas can vary, depending on the current

definitions, and on whether one omits or not Puerto Rican areas. The analysis presented

here is not sensitive to these changes. Here we use the 2010 definitions, and we apply

the same definition for the years 2008 and 2009. Metro and micro areas are defined as

statistical geographic entities, usually a set of counties, consisting of a core area (or ur-

banized area as defined by the U.S. Census Bureau) and the adjacent counties with strong

commuting ties. This specification is an attempt to define cities as socioeconomic entities

and integrated labor markets. The population of the core for metro areas is at least 50,000

and for micro areas is at least 10,000 (but less than 50,000). This means that our data is

left-censored, such that population sizes below 10,000 are excluded. For each urban area

we use the population size estimates from the US Census Bureau.

To construct creative occupations employment numbers, defined in (Florida, 2004,

Appx. A), we use 2010 employment data from the U.S. Department of Labor’s Occupa-

tional Employment Statistics (OES) that is available at the metropolitan area level, together

with the 5-year estimates of the data from the U.S. Census American Community Survey

(ACS 06-10) available at the county level, which we aggregate into micropolitan areas.

Data for inventors was obtained from coding inventor’s addresses obtained from the

U.S. Patent and Trademark Office (USPTO).3 Despite all the publicly available information

about each patent, no unique identifiers are used for inventors. However, using a combi-

nation of conditional matching algorithms, it is possible to identify patents’ inventors, and

2Micro and metro areas are collectively referred to as “core based statistical areas” (CBSA), but we refer

hereafter to the metropolitan and micropolitan areas as urban areas, or simply as cities, interchangeably.

Definitions and more information can be found in http://www.census.gov/population/metro/.
3http://www.uspto.gov/.
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locate them geographically. Details about the algorithm used can be found in Marx et al.

(2009).

4.2.2 Estimations of Probability Functions

A set of cities and their associated indicators can be viewed as a statistical ensemble

of realizations (yi,ni) with i = 1, . . . ,m, of the random variables Y and N. In the present

discussion the former represents counts of either creative workers or inventors, while the

latter represents population size. The constraints on the levels of creative and inventive

activity are inferred directly from the data, and quantified through the estimation of the

cross-sectional probability distributions describing the corresponding measures of creative

class employment and inventor counts. Since both measures count people, they are logi-

cally bounded by the population size of the city, i.e., Y ≤ N. It is a trivial constraint since

both creatives and inventors are a subset of the total population, but it underscores, again,

the importance of taking into account urban population size explicitly in our analysis. We

want to specify the probability of observing Y = y creatives, or inventors, in a city condi-

tional on an urban population of size N = n; that is, we want to specify P(Y = y|N = n),

in which the random variables Y and N take values on the non-negative integers. Since

we want to understand how probable or improbable a particular level of innovative activity

is in an urban area, given a certain number of people living and working in it, a necessary

component of the analysis is to also quantify the probability of having the stated population

size P(N = n). We show in appendix G that knowing the marginal distribution P(Y ) helps

us estimate P(N).

We will relax the condition that Y and N must take integer values, and instead con-

sider them to be continuous. In the case of inventors, we will take the 3-year average from

2008 to 2010. Since our counting of inventors in each year depends upon the existence

of patent applications, our numbers are subject to interannual fluctuations. Using a 3-year
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average reduces this variation. In the case of creative employment, the use of a continuous

approximation is valid since more than 99 percent of the count numbers are larger than

1,000 and span a range of more than three orders of magnitude. Under these conditions the

granularity of the data is not so evident, as P(Y = y)→ 0. The approximation is even more

valid for population size. Hence, we will be estimating probability density functions (pdfs),

as opposed to probability mass functions, which we will denote by pY |N(y |n ; θn), pN(n),

pY (y), where we have made explicit the fact that the parameters of the conditional pdf are

in principle functions of population size n. All parameters are estimated using Maximum

Likelihood Estimation (MLE). In practice, P(Y |N) is estimated using logarithmic binning,

i.e., P(Y |n j ≤ N < n j+1), such that n j+1 = an j = a j+1nmin, where n0 = nmin, and a > 1

determines the bin sizes. We denote the j-th bin as B j = [n j,n j+1). The conditional distri-

butions describe the statistical variation in urban metrics for cities of comparable population

sizes. Conversely, the marginal distribution characterizes the sizes of the concentrations of

people across the whole urban system. Note that by estimating P(Y |N) and P(N) we are

also estimating the joint probability function of Y and N, since P(Y,N) = P(Y |N)P(N).

To understand the constraints on population size we also consider urban population’s

rates of growth, relative to the whole US population growth rate. For the analysis of urban

population growth rates, we took the decennial census records between 1800 and 2010 from

the U.S. Bureau of the Census. Based on the current definitions of metropolitan statistical

areas we constructed the data for MSA populations going as far back in time as possible.4

4.2.3 Interpretations of Probability Distributions

Strictly speaking, there is an infinite number of different stochastic processes that can

generate any particular probability distribution describing a generic random variable X .

Thus, observing a particular statistical distribution does not immediately and uniquely de-

4http://www.census.gov/population/www/censusdata/hiscendata.html.
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termine the underlying generative mechanism. However, one can make reasonable infer-

ences with a proper understanding of the system under study. In the context of cities, the

quantities we wish to understand here presumably arise from the aggregation of many pro-

cesses and many factors X1,X2, . . .. Hence, some limit theorems may apply, and thus we

expect to observe some of the limiting distributions.

Here we will broadly distinguish between additive and multiplicative stochastic pro-

cesses. The former refers to the situation when factors are in general acting separately to

determine the value of the variable X , a situation which can be mathematically expressed

as X = ∑i Xi. If this is the case, we expect the random variable X to be normally distributed

by invoking the Central Limit Theorem (CLT). In contrast, if factors are acting interac-

tively, which can be represented as X = ∏i Xi, we expect the outcome X to be lognormally

distributed, which can be understood by using the CLT once we apply logarithms to both

sides of the equation. The standard assumptions behind CLT are that Xi must be indepen-

dent and identically distributed, and have a finite variance. However, normal and lognormal

distributions can still arise in more general situations, given that in these processes of ag-

gregation different forms of information are dissipated, maintained, or amplified (Jaynes,

2003; Frank, 2009; Frank and Smith, 2011). It turns out that whereas additive processes

dissipate information about the variance of the individual factors Xi, multiplicative pro-

cesses amplify them. This, we will show, will be a way to understand why cities diverge

from each other in their creative and inventive activities as they grow in population size.

4.2.4 Visualization of Probability Distributions

We will visualize the conditional probability density function pY |N(y | n) by plotting

histograms of the data. This is customary for visualizing empirical distributions in general,

but it becomes less useful when the tails of the distributions are heavy and too noisy. This

is precisely the situation for urban population sizes, in which the largest cities are very
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few and have extreme large values. In this case, distributions are best visualized using the

cumulative distribution, or the complementary cumulative (or “countercumulative”), which

are more robust to the noise in the tails. Thus, we will plot the marginal probability pN(n)

through its complementary cumulative function

P(N ≥ n) =
∫

∞

n
pN(n′)dn′. (4.2)

All the cumulative plots will be shown in double logarithmic scales.

4.2.5 Limitations of Our Analysis

Any study that analyzes processes will be necessarily incomplete without studies of

change through time. Therefore, our cross-sectional study of the US urban system is in-

complete and must be complemented with future studies that take into account time. We

have relied on previous studies to inform our understanding of how the quantities we mea-

sure and estimate change through time. Batty (2006) reports that the rank-size rule (Zipf’s

Law) of population sizes is not universal, and concludes that Gibrat’s Law of proportionate

growth needs to be revised. We give further empirical support of this in our analysis. From

Bettencourt et al. (2010), we highlight the fact that urban aggregate measures, in general,

are highly correlated in time. This is relevant to our study since it indicates that measures

of cross-sectional variation are the result of cumulative effects over time.

4.3 Results

Our specific questions are: How many creatives and inventors should we expect there

to be in a city (i.e., estimating E(Y |N))? What is the population size distribution, and how

is population size constrained (i.e., estimating P(N))? How do cities of comparable pop-

ulation size differ in their creative endowments (i.e., estimating P(Y |N))? The answers to

these three questions characterize statistically the urban system’s creative endowments (in
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Figure 4.1: Population Size Scaling of the Counts of Creative Employment C, and Inventors I, in U.S. Metro

and Micropolitan Areas. In Both Plots, Each Point Represents a Different Metropolitan or Micropolitan

Area. The Data on Creative Employment Correspond to the Year 2010, and for Inventors it is the Average

Number Over the Years 2008, 2009, and 2010. The Fitted Model is a Linear Regression on the Logarithms

of Both Variables (Solid Green Line). The Slope of the Regression is the Estimated Exponent of the Relation

Y ∝ Nβ , where N is Population Size and Y is C or I. The Deviations from this Average Behavior for the

Creative Employment Counts (A) Show Less Fluctuations than for (Inventors (B). These Fluctuations Are

Described by the Same Distribution and Suggest the Type of Process Underlying Them (See Text).

the sense defined above) and reveal its constraints. We start answering the posed questions

by showing the general relationship between the urban indicators y and n in a scatter plot

(fig. 4.1). This motivates the investigation of population size alone, in which we determine

the probability density function pN(n) for moving in the horizontal direction in the scatter

plot (fig. 4.2). Once this has been determined, we continue with the analysis of the prob-

ability density function that describes the residual vertical variation, pY |N(y | n) (fig. 4.3).

Since population size sets the baseline for how most of the processes that agglomerate cre-

ative and inventive individuals operate in cities, it is the characteristics of this conditional

distribution that we focus most of our attention on.
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4.3.1 The Role of Population Size and Its Constraints

More than 70 percent of the cross-sectional variation in creative employment and inven-

tor counts is explained by population size alone; the remaining variation, less than 30 per-

cent, is determined by other factors, many of which are the focus of a vast literature in urban

economics, economic geography and regional science. We single out population size from

among all possible explanatory factors as the conditioning variable, because of its large

explanatory power, its customary use as a control variable, and because phenomenologi-

cally it takes precedence over other urban characteristics as a necessary condition for social

systems to work. The importance of population size as a determinant of socioeconomic life

has long been noted by archaeologists, anthropologists, sociologists and economists; we

refer the reader to some of the recent literature and references therein, e.g., Quigley (1998);

Bettencourt et al. (2007a,b); Jones and Romer (2010).

Figure 4.1 plots creative employment and inventors counts against population size over

all metro and micropolitan statistical areas, together with a linear OLS regression of the

logarithmic variables (green solid line). The regression tests the hypothesis that the ex-

pected value is given by

E(Y |N) = Y0Nβ , (4.3)

where Y0 and β are coefficients whose estimates are shown in fig. 4.1.

The observation that ŷi ∝ nβ̂

i , where β̂ is the estimate of the exponent of this power

relation (4.3), is indeed a good predictor of how these quantities scale with population size

serves as the starting motivation for our statistical analysis. The fact that β > 1 means

that larger urban areas are skill abundant, and one may be inclined to think that the key

to increasing creative and inventive activities in cities is to increase their population size.

However, when we observe how many cities there are of different sizes through the estima-

tion of pN(n), we observe that becoming increasingly larger becomes increasingly difficult.
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Figure 4.2: Complementary Cumulative Distribution of Population Sizes. A Cutoff in the Largest Population

Sizes is Present, Suggesting an Accumulated Effect from Constraints to Growth. For Fitting the Density

Function (4.4) of pN(n), we Used the Estimated Parameters of the Density pY (y) for Creative Employment

Counts (See appendix G). Thus, β̂ = 1.083, the Estimated Exponent is α̂ = 1.675, the Estimated Char-

acteristic Scale of the Exponential Tail is ν̂ = 11,329,658, and the Model Holds for Populations Above

n̂min = 35,141 (Dashed Gray Vertical Line). See appendix G for Goodness-of-Fit Tests.

Figure 4.2 shows the empirical complementary cumulative distribution of population

sizes. The function

pN(n;α,β ,ν ,nmin) =C
e−(

n
ν )

β( n
ν

)α , n≥ nmin, (4.4)

provides a good fit (solid red line). Here, C is a constant of normalization, α > 0 stands as

an exponent that determines the broadness or narrowness of the distribution, ν is a charac-

teristic scale above which an exponential decay dominates, and β is the scaling exponent in

equation (4.3). This function supports the widely accepted result that population sizes are

well described by a Pareto distribution in the upper tail, but here we find evidence of a cut-

off for the largest cities (see Berry and Okulicz-Kozaryn, 2012, Section 4 and the references

cited therein for a discussion about this cutoff). We refer the reader to the appendix G for

the details about the estimation of the parameters and the derivation behind the functional

form in equation (4.4).
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The rationale behind equation (4.4) is phenomenological and comes from two sources.

First, power-laws (also referred as Pareto or Zipf distributions5) in urban sizes have been

often assumed as the rule, being the result of processes by which bigger cities attract more

people giving rise to “rich-gets-richer” effects that usually lead to such heavy-tailed distri-

butions (Zipf, 1949; Simon, 1955, 1968; Gabaix, 1999; Soo, 2005). Economic foundations

of the power-law distribution of population sizes usually rely in Gibrat’s Law, whereby the

growth of city populations is independent of their size (the original explanation comes from

Gabaix, 1999). Second, and despite the previous reasoning, real systems, such as cities, are

finite and therefore size and growth have ultimate limits. In physics, such effects are called

“finite-size” effects, and are often characterized by an exponential decay (Newman, 2005).

We distinguish distinct regimes in this distribution from comparison to a straight line

(in the log-log plot). A straight line in this type of plot would be the signature of a Pareto

distribution, and it is indicative of a lack of characteristic scales6. According to fig. 4.2,

however, only the middle range of US city sizes displays this scale-free phenomenon, and

deviations from it in the right tail suggest that scale becomes significant for large popula-

tions. Estimates of the population sizes at which these regime transitions occur are given

by n̂min ≈ 35,000, from which the Pareto behavior starts, and ν̂ ≈ 11,000,000, in which

the Pareto behavior ends. The cities with population sizes larger than ν̂ are the New York

MSA with approximately 19 million and the Los Angeles MSA with approximately 13

million inhabitants. These boundaries are not absolute, and are rather smooth transitions.

The important result in this section is that we have estimated a size scale around which

stronger constraints to population growth appear.

5A Pareto distribution is a power-law with a density p(x) ∝ x−α , where the exponent α is larger or equal

than two. The case when τ = 2 is special because all its moments are infinite, and is called Zipf’s law.
6Pure power-law functions f (x) = Axa lack characteristic scales, and are often referred to as “scale-free”

functions, since the ratio f (λx)/ f (x) = λ a is independent of the scale x.
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Note that we are less interested in evaluating the exact shape of pN(n) and more inter-

ested in what the distribution tells us about the constraints on population size. The specifi-

cation given in equation (4.4), and its superior fit over other specifications (see appendix G),

suggest that there is in fact a scale above which population growth no longer follows the

proportionate growth (Gibrat’s Law) implied by the Pareto behavior of the medium sized

cities. This conclusion is in contrast with the recent interpretation reported by Berry and

Okulicz-Kozaryn (2012), in which the authors claim that the cutoff is due to a geographic

underspecification of these regions.

In consequence, we see that the U.S. urban system as a whole has three population-

size regimes, with two characteristic population scales separating them. Since the number

of creatives and inventors positively correlates with population size, their marginal distri-

butions mirror that of the population when looked across all cities (for a similar analysis

about patents and population size distributions see Ó hUallacháin, 1999). If a Pareto dis-

tribution is taken as the null description of city population sizes (Batty, 2008), then we

identify deviations from it in the U.S. system of metropolitan and micropolitan areas on the

left and right tails of the distribution. Especially interesting is the deviation in the upper

tail, in which big cities are smaller than what a Pareto distribution would predict (see also

Black and Henderson, 2003 for an econometric analysis of such deviation). This observa-

tion suggests different population growth dynamics appear after a certain population size.

Data on relative grow rates of metropolitan cities supports this hypothesis (see appendix G,

fig. G.2). A cutoff in the right tail of the population size distribution effectively reveals a

constraint on big population sizes.

The distribution of population sizes has a long history that goes back to the first half

of the twentieth century when it was discovered the remarkable regularity that the sizes of

the largest cities displayed a linear relationship when plotted against their rank in log-log

plot. The debate has more recently been on whether this distribution is best described by a
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log-normal, a Pareto, or different mixtures of both distributions in which the body is more

lognormal-like with a Pareto tail (Ioannides and Skouras, 2013; Malevergne et al., 2011;

Giesen et al., 2010).

These previous studies, however, use as their main units of analysis the U.S. Census

Places7. For such units of analysis, these studies provide good reasons to believe that the

body of the distribution might be lognormal and that the tail is Pareto. Since such urban

unit definitions are not motivated by economics questions, the resulting city size distri-

bution does not convey information about how cities operate as socioeconomic networks.

Metropolitan and micropolitan areas, on the contrary, are more germane units for urban

economic analyses. Given this, the observed deviations from a Pareto distribution in the

upper-right tail of metro and micro populations sizes can be interpreted to arise, from this

point of view, from the socio-economic processes that constrain or enhance the growth of

cities.

Even though we have not studied the factors that explain this population size cutoff,

it is not unreasonable to think that there are different growth dynamics in the scale of the

largest cities within an urban system. In fact, the general statistical pattern and its interpre-

tation regarding growth dynamics has been recognized before (e.g. Black and Henderson,

2003; Duranton and Puga, 2004; Rosenthal and Strange, 2004, 2006). What is new in our

approach, is that we have identified such effect through other urban metrics. This has made

the statistical estimation procedures to perform better, which has allowed us to better esti-

mate the scale at which these constraint act, by estimating a cutoff scale (see appendix G).

It is important to emphasize that the effect of the cutoff is relative, and that the largest

cities are still growing with the proportion of creative employment and inventors to total

population still scaling regularly across all sizes.

7The U.S. Census Bureau defines a place as concentrations of population that have a name and are inde-

pendently and locally recognized.
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4.3.2 The Distribution of Creative and Inventive Activities for Cities of Comparable

Population Size

Figure 4.1 shows that the average of creative employment and inventors counts varies

regularly as a power of population size, characterized by equation (4.3). The statistics of

the deviations around this relationship will tell us how far, in probabilistic terms, can a

city increase, or decrease, its creative and inventive activities. Figure 4.1 also shows that

the behavior of creatives is different from that of inventors, as the latter displays much

more dispersion around the regression line. In this section we quantify this behavior by

estimating the probability density of these fluctuations.

Conditional Distributions

Figure 4.3 plots the histogram of the transformed variables

z =
ln
(

y|B j

)
− µ̂ j

σ̂ j
, (4.5)

where, for each set of cities with populations within bin B j, we have calculated the (un-

biased) sample mean µ̂ j and standard deviation σ̂ j of the logarithm of the corresponding

counts of the variable Y in each bin, denoted by y|B j :

µ̂ j =
1∣∣B j
∣∣ ∑

n j∈B j

ln
(
y j
)
, (4.6)

and

σ̂ j =

√
1∣∣B j
∣∣−1 ∑

n j∈B j

(
ln
(
y j
)
− µ̂ j

)2
. (4.7)

In equations (4.6) and (4.7),
∣∣B j
∣∣ denotes the number of observed cities in bin B j.

The quantity z for all variables is well fitted by a standard normal distribution (fig. 4.3),

which means that the untransformed numbers yi are lognormally distributed, conditioned
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Figure 4.3: Histograms of Creative Individual Counts Conditional on Population Size. We Fit a Standard

Normal Distribution to the Normalized Frequency Histograms of the Standardized Logarithmic Counts of

Creatives (A) and Inventors (B). For Both Plots the Counts Were Transformed y|B j → z =
ln(y|B j

)−µ̂ j

σ̂ j
, where

y|B j Stand for the Values of Y for Cities with N ∈ B j, and µ̂ j and σ̂ j are the Corresponding Sample Mean and

Standard Deviation of the Log-Counts of that Bin. The Bin Size Used to Construct the B j Intervals, Was Set

to a = 1.225 so that there Was a Good Balance Between the Number of Observations Per Bin (∼ 25) and the

Total Number of Bins (∼ 37). The p-Values Shown Are from a Chi-Square Goodness-of-Fit Test, where we

Consider p > 0.10 to be an Acceptable Level to not Reject a Normal Distribution. See the appendix G for

More Details on Goodness-of-Fit Tests.

on population size.8 The density of the random variable Y can thus be written as:

pY |N(y |n ; µn,σn) =
1

y
√

2πσ2
n

e
− 1

2σ2n
(ln(y)−µn)

2

. (4.8)

We conclude that a lognormal distribution provides a good description of the number of

creative class workers and inventors for all cities, given the population size dependence of

the distribution parameters. Goodness-of-fit tests are presented in the appendix G.

Lognormal distributions have a long history in economics (Aitchison and Brown, 1957),

and in the natural sciences in general (Redner, 1990; Limpert et al., 2001). Thus, it is not a

8In this analysis, the instances when y = 0 have been excluded.
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Figure 4.4: Population Size Dependence of the Estimates of the Lognormal Parameters of Each Bin. Creatives

(A) and Inventors (B) Are Shown Here to Differ in How the Variance of the Logarithmic Counts σ̂2
n =

∑(lnY − µ̂n)
2/(m−1) Depends on Size, and the Level. Although the Variance is Much Higher for Inventors,

there is a Weak Tendency to Decrease with Population Size. This May Be an Artifact of the Last Point, Which

only Has Few Data Points (See Text).

surprise to find the distribution of creatives and inventors to be lognormal. The importance

of this is that it can be quantified, and used to assess the viability of policy goals.

Population Size Dependence of the Log-Variance

As was shown in the previous section, each bin corresponds to a collection of lognormally

distributed variables. Figure 4.4 plots the n-dependence of the parameter σn of those bins.

The results coming from the behavior of the σ parameters stand as an important restric-

tion on the type of models that should generate our statistics. In particular, they say that

the variance of the logarithmic variables varies weakly with population. Since the standard

deviation of a lognormal distributed random variable is proportional to the mean, this is

equivalent to saying that the standard deviation s of the variable Y scales with population
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size as

s(Y |N) ∝ Nβσ , (4.9)

where βσ can be a constant as for creatives (fig. 4.4A), or a weakly varying function of N

as for inventors (fig. 4.4B). Since the levels of creative and inventive activities are strongly

correlated from one year to the next, increases in population size will exacerbate any exist-

ing deviation from the mean.

The parameter µn is not shown, but it can be deduced from the fitted line shown in

fig. 4.1. The full specification of pY |N(y|n) allows us to calculate, for example, what is

the most probable level of creative and inventive activities for each metro and micro area

according to their population size, and how probable it is that they have their current level,

or one greater. Table 4.1 presents 12 outlier cities (5 micropolitan and 7 metropolitan

areas) which had log-deviations from the log-mean, in either creatives or inventors, whose

likelihood was less than one over the total number of cities. In mathematical terms, we

chose those cities for which y /∈ [eµ(n)−zσ(n),eµ(n)+zσ(n)], where the value of z = 3.07, such

that 1−Φ(z)< 1/938≈ .00107, where Φ(·) is the cumulative normal standard distribution.

Since lognormal distributions are skewed and our sample of cities in each population

bin is finite and small, the most probable value eµn−σ2
n stands as a good comparison point

to assess the creative and innovative profile of urban areas.

The Los Alamos micro area is the smallest of the cities, yet has more than 200 times

the number of inventors that was most probable to have, and three times as many creatives,

according to its size. On the other extreme, the San Jose metro area is the largest of in

the Table, and has also very unlikely counts of both inventors and creatives. Likewise, for

Durham-Chapel Hill. Table 4.1 gives quantitative calculations that show how these urban

areas are very unlikely cities, and that the reasons behind their extreme values must be

analyzed separately.
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The cases of Mountain Home (ID) and Clovis (NM) are interesting. They belong in the

table because the former has more than 500 times more inventors than it should, and the

latter has five times less, which according to their size makes them outliers. But their re-

spective number of creatives is also interesting. The skewness of the lognormal distribution

enables the fact that, while having more creatives than the most probable value, they have

more than 50 percent likelihood for increasing their creative employment. Palm Coast (FL)

presents a similar case: it has more than the probable number with respect to inventors, but

less with respect to creatives. In fact, it belongs to the table because it has an extremely

low level of creative employment. These three cities, given the whole US urban system in

which they are embedded, have good potential to increase their creative activities.

4.3.3 Multiplicative Random Processes

Our main finding is that the statistics of creatives and inventors for cities of comparable

population size are all well described by lognormal distributions. One of the implications

behind the lognormality of Y is that the distribution is determined by two parameters only.

Using tools from information theory, a lognormal distribution can be understood to arise

from the maximization of entropy subject to informational constraints on the geometric av-

erage and the geometric standard deviation, i.e., eµ and eσ , respectively (Frank and Smith,

2011). This means that the processes that increase or decrease creative and inventive ac-

tivities in cities are sensitive, in a multiplicative way, to the variations of a large number of

input factors.

From equation (4.1), we conclude that

Aggregated effect

of all other factors
=

m

∑
j=1

f j(Xi, j), (4.10)

where the Xi, j is the j-th factor influencing the creative endowments of city i, and f j is a

function of this factor. Our observation that these deviations are (log)normally distributed
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suggests that the number of factors m is large enough so as to render the Central Limit The-

orem applicable. These empirical observations and their meaning can be thus summarized

in the following equation:

yi = Y0 nβ

i

(
m

∏
j=1

g j(Xi, j)

)
, (4.11)

where g(x) ≡ e f (x). The fact itself that equation (4.11) is multiplicative is indicative that

these factor influence the variable Y in an interactive way. This suggests that the level of

creative and inventive activities in an urban area is a structural outcome. The parameters

of the distributions impose further constraints: the mean and standard deviation of these

quantities scale as power functions of population size.

Lognormal distributions indicate that the counts of people involved in creative activities

increase from a conjunction (product) of effects (“A and B and . . . ”), as opposed to normal

distributions which arise from disjunction (sum) of events (“A or B or . . . ”). For instance,

the right regional amenities, job opportunities, partnerships, etc., all have to act in conso-

nance in order to increase its creative endowments (from within and/or from outside). From

a public policy perspective, one of the implications is that there is no single-subject silver

bullet for fostering innovation in cities of a given population size. Increasing the creative

endowments of a city (e.g., creative employment and inventors) requires a coordinated ar-

ray of propitious circumstances such that all the steps necessary in their enhancement are

successful. This is characteristic of multiplicative processes. However, such processes in

cities must be further restricted by the population-size (in)dependence of the distribution

parameters as discussed above.

4.4 Conclusion

Regarding innovation and the growth of cities, Agrawal notes that “[through] a com-

prehensive survey of the modern literature on innovation and regional growth, [one] dis-
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covers how much we don’t know about the mechanisms at work behind the curtains—it

is predominantly the statistical correlations between presumed input factors and outputs

that assume the spotlight in recent empirical work on this topic” (Agrawal, 2003, p. 460).

The assumption behind traditional efforts to understand the sources of innovation is that

some few, specific, and well-defined mechanisms underlie the agglomeration of creative

and inventive individuals. It is likely, however, that the number of mechanisms is large.

Correspondingly, we have focused our attention into analyzing how likely or unlikely is

to observe a city’s creative and inventive endowments, eschewing any mention to specific

mechanisms. But in fact we believe framing this question in the language of probabilities

contributes to our understanding of the “mechanisms behind the curtains”.

As nations draw more heavily on their capacity to produce knowledge to foster eco-

nomic growth, and as their total population grows and gets increasingly concentrated in

cities, questions about how the power of creativity and inventivity can be harnessed to keep

creating wealth become central. Here we have delineated, in precise quantitative terms, the

probabilistic landscape in which cities embedded in a larger system can be found.

The reason probabilities take a central role in this investigation is because cities, by

virtue of being collections of a diversity of people, firms and institutions, connected through

a myriad of physical and informational networks, fluctuate from their expected behavior,

often very wildly. This, effectively, can be modeled in a stochastic way. The study of statis-

tical fluctuations is necessarily richer than the study of averages. A system in equilibrium

has its forces in balance, and consequently the study of averages is unable to reveal those

forces. The forces are manifested, rather, when the system fluctuates from its equilibrium

or average state. By studying these fluctuations, and how they change with population size,

a simple characterization of the statistics and behavior of cities emerges.

As a baseline to understand the general statistical patterns innovative activities in urban

areas, we studied the constraints on population size. We found that, at least for the case of
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U.S. Micropolitan and Metropolitan areas in recent years, increases in population become

more difficult once a city enters a stage of large population sizes. Extending this study to

other countries constitutes future work.

Overall, the number of creative and inventive individuals increase on average superlin-

early with population size, but the deviations from the mean behavior are mediated through

some constrained multiplicative random process. This reveals that the array of different

conditions interact, and thus the levels of urban creative and inventive activity are either

amplified or suppressed, and this emphasizes the need to have structural views of the func-

tioning of cities.

Although we have focused on counts of creative employment and inventors as sources

of creative and inventive activities to understand urban wealth creation, the methodology

presented here stands as a general framework to study cities and urban systems.

A clear statistical description of cities across an urban system had been missing as a

way to understand innovation in urban systems. A detailed stochastic model that repro-

duces the statistics found here is part of ongoing work. Given the suggestive evidence of

multiplicative processes at play, further studies should aim to identify and quantify explic-

itly the different steps involved in attracting creativity and the production of knowledge.9
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Chapter 5

COMPUTATIONAL MODEL OF SKILLS DIVERSIFICATION AND URBAN

DIFFERENTIATION

In the previous chapters we have seen how aggregate measures of urban output are approx-

imately described by lognormal distributions, when conditioned over cities of the same

population size. Alves et al. (2013a,b, 2014); Mantovani et al. (2013) have recently re-

ported additional independent support of this result. They have found that lognormals are

present in crimes other than homicides, in the number of voters in electoral processes, and

other urban indicators in Brazil such as child labor, illiteracy, income, sanitation and un-

employment. This is not a trivial fact, since the lognormal distribution is not a limiting

distribution arising from sums of random variables. The question is thus, what mecha-

nism or mechanisms of production generate aggregate urban output with lognormal-like

distributions? In this chapter we analyze such question with a computational model of pro-

duction using the framework proposed by Hidalgo and Hausmann (2009) and Hausmann

and Hidalgo (2011). We find that the proposed model robustly generates distributions that

are approximately lognormal, and that increases in the complexity of skills in a city in-

creases its aggregate production exponentially.1

5.1 Introduction

Recent studies indicate that cities, regions, and countries gain knowledge by creating

and attracting skilled individuals (Muneepeerakul et al., 2013; Neffke and Henning, 2013;

Neffke et al., 2013). Florida (1995) dubbed this phenomenon the learning region. This
1This work was done in collaboration with Professor Rachata Muneepeerakul.
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process of acquiring and accumulating skills has been shown to bolster the evolution of

economies (Glaeser and Saiz, 2004), from less to more complex (Klimek et al., 2012), but

this process is constrained (Hidalgo et al., 2007; Muneepeerakul et al., 2013; Bahar et al.,

2014). And the constraints come from the fact that new skills have to integrate with the

capabilities already present in the economy. Florida (1995, p. 534) describes this situation

as an interplay between different types of infrastructures:

Learning regions provide the crucial inputs required for knowledge-intensive

economic organization to flourish: a manufacturing infrastructure of intercon-

nected vendors and suppliers; a human infrastructure that can produce knowl-

edge workers, facilitates the development of a team orientation, and which is

organized around life-long learning; a physical and communication infrastruc-

ture which facilitates and supports constant sharing of information, electronic

exchange of data and information, just-in-time delivery of goods and services,

and integration into the global economy; and capital allocation and industrial

governance systems attuned to the needs of knowledge-intensive organizations.

It is indeed intuitive that a functioning infrastructure must be in place in order for a skill

to be productive. This type of constraint, in which an outcome depends on the success of

many other factors acting in conjunction (as opposed to separately), is known to generate

lognormal distributions, and fat-tailed distributions more generally (classic references are

Montroll and Shlesinger, 1982; Redner, 1990; Mitzenmacher, 2003). Hence, the multi-

plicative process we invoked in chapter 2 to generate the productivity of individuals might

be behind the productivity at the level of the whole city instead. But how exactly? Could

the view expressed by Florida in the above passage be formalized to provide an explanation

of why we see aggregate urban output lognormally distributed in cities of the same popula-
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tion size? We analyze this question from a computational point of view, and formalize these

interdependencies between skills in a mathematical model of urban production processes.

Our results suggest that urban areas not only need a diversity of skills to enhance pro-

ductivity, but also the “right” mix of skills. In the context of our model, production pro-

cesses are characterized by Leontief production functions of the inputs (comparisons with

other production functions can be found in appendix F), which introduce a multiplicative

mechanism of production. I will explore and expand the recent theoretical framework of

Hidalgo and Hausmann (2009) and Hausmann and Hidalgo (2011), originally proposed to

explain the economic development of countries in terms of their diversification, to under-

stand this constrained multiplicative process of skills accumulation. This study will address

how variability in the aggregate output of cities results from the variability in the diversity

of skills at the level of individuals.

5.2 Conceptual Framework

Our question of interest is why urban measures of output are lognormally distributed for

cities of the same population size. We base our study on the works of Hidalgo et al. (2007);

Hidalgo and Hausmann (2009); Hausmann and Hidalgo (2011) who model the structure of

the bipartite network describing countries and the products they export. We choose these

works because they address questions about the complexity and structure of economies di-

rectly using network theory, and thus offer a starting point to study multiplicative processes

at systemic levels.

Despite the premise that effects acting in conjunction in the production of an output can

be modeled by stochastic multiplicative processes that generate lognormal distributions, it

is important to say that there is not a sharp divide between “multiplicative processes” and

“additive processes”. Cities are noisy environments with several effects affecting each other
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in a variety of ways. Hence, our aim is not to reproduce exact distributions (e.g., normal or

lognormal), but instead to study how multiplicative mechanisms can arise in cities.

The transition between additive and multiplicative processes can be understood by not-

ing that if the multiplicative effects are weak, the process can be approximated by an addi-

tive process. For instance, if the effect i is modeled as (1+ εi) where εi is a random noise,

the output

y = (1+ ε1)(1+ ε2) · · ·(1+ εn) (5.1)

can be approximated by

y≈ 1+ ε1 + ε2 + . . .+ εn, (5.2)

if εi� 1, by neglecting high order terms.

5.2.1 Production in Cities

We will use cities as our geographic unit of analysis, and we will use the word “prod-

ucts” as a way to refer in general to different observable outputs resulting from production

processes in cities.

We expand the model proposed in Hidalgo and Hausmann (2009); Hausmann and Hi-

dalgo (2011) by

1. Determining not only the presence or absence of capabilities/skills in a city, but also

their quantity.

2. Modeling the evolution in time of these endowments.

The model is formally written as (analogous to Eq. (7) in Hausmann and Hidalgo,

2011):

Xt = Ct�P. (5.3)

In general, the matrix Ct is a multi-dimensional representation of cities and their skills.

It is a matrix that can be arbitrarily detailed, having for example the information of how
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many skills there are in what sector and industry of the economy, with a given level of

education, and so on. This matrix, in principle, is time-dependent, since cities acquire and

lose skills by general processes of birth, death and migration, which is why we use the

superscript t. In contrast, the matrix P is fixed and constant in time, and represents the

production requirements of all products in terms of skills. The operator � defines how the

endowments of cities are translated into actual products.

Here, we will assume that Xt = (Xcp)Nc×Np is a Nc×Np city-product matrix where the

element Xcp represents the production value, or urban output, of city c in product p. The

matrices Ct = (Cca)Nc×Na and P = (Pap)Na×Np are two-dimensional matrices. The matrix

Ct represents the matrix of cities and their skills (of which there are Na number of them,

and which we index by the letter a). The matrix P is a Na×Np matrix whose columns

define products as particular sets of these Na skills that are required to produce them. In

this conceptualization of the world, differences in total urban output between cities will

arise from differences in their skills set. Total urban output is mathematically defined as

yc =
Np

∑
p=1

Xcp. (5.4)

The resemblance of equation (5.4) with equation (2.5) comes from the fact that the defi-

nition of aggregate output means that it is a sum of terms. Equation (5.4), however, is a

sum over products produced at a higher level of organization, and not over what individuals

produce, like in the null model presented in chapter 2. Also, these terms in equation (5.4)

are not identically nor independently distributed. All these differences generate a some

patterns of urban differentiation that will be analyzed below.

The � operator in equation (5.3) is a production operator that determines how much

of each product each city produces, given the skills that it possesses. As an example, and

without loss of generality, consider a product p, represented by the vector ~p (taken as a

column of matrix P), and defined as requiring three specific capabilities a = i, j, and k.
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Mathematically, the i-th, j-th, and k-th elements of the p-th column vector of P are αi, α j

and αk, respectively, and the rest of elements Pap for a /∈ {i, j,k} are 0. Now, suppose that

a city ~c (a row of matrix C) is endowed with Cc,i, Cc, j and Cc,k, specifying a measure of

the quantity of those specific skills available in the city. These three values represent the

input production factors to produce p by city c. We thus have that the total output of this

particular product is determined by a production function

Xcp = F�
(
Cci,Cc j,Cck;αi,α j,αk

)
. (5.5)

For completeness, we will consider three options for �, but we will focus mostly on

Option 1, and leave some of the computational results for the other two options for ap-

pendix F:

Option 1: A Leontief production function: F�
(
Cci,Cc j,Cck

)
= min

{
αiCci,α jCc j,αkCck

}
.

Option 2: A Cobb-Douglas production function: F�
(
Cci,Cc j,Cck

)
=
(

Cαi
ci Cα j

c j Cαk
ck

) 1
αi+α j+αk .

Option 3: A linear production function: F�
(
Cci,Cc j,Cck

)
=

αiCci+α jCc j+αkCck
αi+α j+αk

.

Here, the coefficients (αi,α j,αk) are just constants, whose precise interpretation changes

depending on the production function in consideration. Roughly, they quantify the weight

(e.g., productivity) of each factor in the production process. These coefficients are, in

principle, introduced through the definition of P. For simplicity, we will take αi = α j =

αk = 1. The above production functions will apply not only to three factors of production,

but to all that are defined by the matrix P.

5.2.2 Limitations

One of the limitations of the model is that it assumes that skills in cities are infinitely

available. In other words, the skill endowment of a city represented by Cca is shared by all

the processes of production within the city and is not reduced by the number of products
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requiring the skill. Hence, skills in our model, once acquired, are an unlimited resource.

This is unrealistic since a skilled workforce is a scarce and limited resource, which precisely

explains the higher wages of skilled individuals (Rauch, 1993; Glaeser et al., 1995; Florida

et al., 2012).

A solution to address this issue is to add an additional dimension so that C=(Ccap)Nc×Na×Np .

The new dimension indexed by p would count how many “skill units” of skill a are being

used by city c to produce product p. This specification of the model would be more realis-

tic and more easily interpretable. These units would be proportional to a labor force, and

thus the population of the whole city would naturally be proportional to the total number

of units across all skills and all products.

popc ∝

Na

∑
a=1

Np

∑
p=1

Ccap. (5.6)

However, adding this dimension not only makes the simulation of the model computa-

tionally expensive, but it also introduces the need to define rules for how skills are allocated

to produce different products, e.g., through optimization, etc.. We eschew these considera-

tions by simply assuming that the value of Cca already accounts for its availability.

Another conspicuous limitation is that the model does not allow open-ended diversifi-

cation and innovation since we assume that the number of skills Na is finite and countable

(see Bettencourt et al., 2014 for an empirical study about this topic). For this reason, the

space of possible products is also finite. This limitation, however, is not very restrictive

since the number of possible products scales exponentially like 2Na . Hence, for a large

number of skills, the space of products will be huge and most of it will not be explored

anyway. From theoretical reasons, there is an expectation that a relation between techno-

logical innovations and the process of biological evolution, which is open-ended, exists

(Arthur and Polak, 2006; Beinhocker, 2006; Thurner et al., 2010; Klimek et al., 2010,

2012). Consequently, a correct theory of how technological innovation occurs must clarify
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the commonalities and differences between the process of biological evolution. In the case

of our model, its lack of open-endedness goes precisely against the expectation that both

innovation and biological evolution are open-ended.

And lastly, we do not model the loss of skills. It is indeed of special interest to un-

derstand in general the migration patterns of skills in cities, for example, by measuring by

the flows of people in and out of job occupations. Understanding these flows, and ana-

lyzing their impact in the production processes in cities has been an important subject of

research in urban economics. Here in our study, however, we only aim to study if and how

a multiplicative process can emerge from a model of production.

5.3 Simulation

For the following sections, we will use the total number of capabilities in a city as a

measure of its size. As discussed in the previous section, this may or may not be linearly

related to the actual population size, but is still a measure of size. Hence,

sizec =
Na

∑
a=1

Cca. (5.7)

5.3.1 The Binomial Model

Hidalgo and Hausmann (2009); Hausmann and Hidalgo (2011) proposed a model, the

“binomial model”, that we shall argue is a building block of a more general model. More

precisely, we will show that their model can be viewed as a one-step iteration of a model

that can be iterated several times.

The binomial model consists of filling the matrices C and P such that each element

is 1 with a probability r and q, respectively, and 0 otherwise. Then it uses the Leontief

production function to calculate X = C�P.

Since the matrices C and P are binary, the matrix X, which is denote as Mcp in the orig-

inal papers, is also binary. The interpretation of Mcp is of an adjacency matrix describing a
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bipartite network of which products are exported by which countries. The diversification of

a country is defined in the binomial model as the number of products the country exports:

kc,0 = ∑
p

Mcp. (5.8)

Hausmann and Hidalgo (2011) find that this measure is well fitted by lognormal and weibull

distributions.

The binomial model is successful at reproducing some stylized facts of the network con-

necting countries and the products they export (see Hidalgo and Hausmann, 2009; Haus-

mann and Hidalgo, 2011). But in the context of our question (why do we see lognormals in

the distributions of urban output conditional on population size?) this model can be viewed

as a “bernoulli step” in a more general dynamical model. Hence, these matrices and the

results they generate have a different interpretation for us.

The fact that the diversification, as defined in equation (5.8) by this simple model, is

lognormally (or weibul) distributed invites a dynamic generalization of the model and the

analysis of the robustness of the distributions generated. Let Ct=0 be an initial matrix of

zeros, and Ct=1 the matrix filled as in the bernoulli step of Higalgo and Hausmann’s model.

Now, the next time step will consist of generating again the bernoulli step with the same

probability r and adding the result to Ct=1 to create Ct=2. This process is repeated at each

time step. It is then trivial to see that after T time steps, each element Ct=T
ca is a random

variable binomially distributed B(T,r). Note, then, that Hausmann and Hidalgo (2011)’s

diversification is for us the urban output yt=1
c in the first iteration of the model. The question

is whether yt=T
c is lognormally distributed, and under what conditions.

5.3.2 The Poisson Limit and Model Parameters

The physical interpretation of r in the dynamic version of the binomial model is that

it represents the probability of acquiring a unit of capability over a single time-step. This
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Table 5.1: Poisson Model as the Limit of the Binomial Model. Parameters of the Model in the Limit of

T → ∞ with rT = λ .

Parameter Meaning

Nc ∈ N>0 Number of cities

Np ∈ N>0 Number of products

Na ∈ N>0 Number of skills/capabilities

q ∈ (0,1) Bernoulli probability for filling P

F� ∈ {Leontief,Cobb-Douglas,Linear} Production function

Cca ∼ i.i.d Poisson(λ ) with λ ∈ R>0 Rate of acquisition of skills for C

time-step could be measured in days, months or years, depending on the process, and T

could represent longer periods of time. In a city, however, the acquisition of a single skill

can be assumed to happen in the order of seconds, and with very small probabilities r. But

one is typically interested in the accumulated statistics over periods of time much longer

than seconds (e.g., a year), which means that T will be very large. To account for this,

the binomial distribution which we use to simulate the acquisition of skills has a simple

approximation. As r→ 0 and T → ∞, the distribution becomes approximately Poisson.

This simplifies the model and is useful for simulating different instances to explore the

parameter space.

Given

λ ≡ lim
r→0,T→∞

Tr,

then CT→∞
ca ∼ Poisson(λ ). In this Poisson limit, λ represents the rate over a period of time

(e.g., a year) at which skills are acquired2. Table 5.1 lists the parameters of the model in

this limit and their meaning.

In general, the number of cities Nc in urban systems is on the order of thousands, and

therefore we will fix it as Nc = 1000 for all following simulations.

2Note that there is no conflict in the units of λ , since T is the parameter of the Binomial distribution and

is a number with no dimensions. In this way, λ and r share the same dimensions of a rate.
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The number of products, in contrast, depends on the phenomenon we are studying and

the resolution and scale at which we are looking. In a criminological context, for example,

different criminal know-hows produce different types of crimes. Each type of crime is a

different “product” of a different set of criminal activities within cities. Clearly, the number

of different products in this context depends on our classification of crimes. We may refer to

two: violent and non-violent, for example. But there may be tens of thousands or perhaps

more. In the case of exports by countries, for example, Hausmann and Hidalgo (2011)

chose two classification schemes, from the SITC4 dataset and the HS6 dataset (see Hidalgo

and Hausmann, 2009 for the sources of the data and the details), for which Np = 775 and

Np = 5109, respectively. Here, we will fix the number of products to Np = 2000 since it

seams reasonable to think that the number of products is larger than the number of cities,

but we keep it on the same order of magnitude.

Lastly, we need to define the number of skills Na. This number has the same issues

as the number of products, namely, the dependence on the resolution and classification

scheme. According to the way we decided to define the products that make up the matrix

P, there are 2Na − 1 total number of possible products3. This number increases exponen-

tially fast as we increase the number of skills. In principle, from the point of view of the

mathematical consistency of the model, the only constraint we have is that Np has to be

smaller than the total possible number allowed by specifying Na, i.e., Na ≥
⌈

ln(Np+1)
ln2

⌉
. We

will fix Na = 100 to see how the model behaves with the number of skills in the order of

the hundreds, even though in this specification the percentage of products actually defined

out of the total possible, Np/(2Na−1), is very small.
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Figure 5.1: Typical Scatter Plot of Output Per City, yc, Versus the Measure of City Size, sizec, for q = 0.5 and

λ = 4.0. Here, Nc = 1000,Np = 2000,Na = 100, and Cca ∼ Poisson(λ ). Each Point is a City c. Interestingly,

Discrete Levels of Output, Represented by “Clouds” of Points at Different Heights, Emerge from the Model

Spontaneously. These Differences Are Analyzed in the Text, and Shown to Arise from a Multiplicative Effect

ω . In this Figure, Levels Go Approximately from 100→ 250→ 500→ 1000→ 2000, Which Suggests that

ω ≈ 2.

5.4 Results

Figure 5.1 shows the relationship of the output, yc, versus the measure of size, sizec,

for {Nc = 1000,Np = 2000,Na = 100}, when q = 0.5 and λ = 4.0. This plot shows an

important feature of the model related to the different “levels” in which the dots appear to

cluster. Hence, there is a broad discretization of output at different levels that emerges from

the model. Moreover, cities cluster in levels of output that increase multiplicatively, and

we refer to this effect as ω . This is manifested as bigger and bigger jumps from one level

to the next (see caption in fig. 5.1).

Note that these levels are not explained by differences in size, or more precisely, dif-

ferences in the total number of capabilities. These differences arise from the differences in

arrangements that the skills within cities form to produce different products. We regard this

3The “−1” in the expression comes from not counting the product defined as an array of zeros.
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Figure 5.2: Scatter Plots of yc, in Logarithmic Scale, Versus sizec, in Logarithmic Scale, for Different Com-

binations of the Parameters q and λ . Here, Nc = 1000,Np = 2000,Na = 100.

multiplicative feature of the simulated output, as a stepping-stone towards understanding

the emergence of lognormally distributed aggregate urban output, given size.

Figure 5.2 shows an overview of different combinations of q and λ , in which the axes of

all panels are of the same scales. This makes us lose the ability to see the internal structure

and more particular characteristics of the scatter plots, but it provides us with a quick way

of looking at the different profiles of output versus size.

The empty plots in fig. 5.2 indicate that cities were not able to produce the products.

This will be explained in section 5.4.1 in more detail, but intuitively this comes from the

fact that when q is large, the products become too complex to produce (i.e., too many skills

required), especially if λ is small and cities have very few skills.
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Figure 5.3: Scatter Plots of yc, Logarithmic Scale, Versus sizec, in Logarithmic Scale, for Different Combi-

nations of the Parameters q and λ . Here, Nc = 1000,Np = 2000,Na = 100.

In fig. 5.3 we have plotted the same model results, but now the subplots use their own

appropriate scales for the plot axes. In this visualization of the data, the distribution of the

points are more clearly visible.

Figure 5.4 plots the corresponding histograms of the output conditional on city size. We

use the same methodology as in chapter 4, in which we standardize the logarithm of output

for all size bins. Here, however the bins are linear and not logarithmic because the range

of different sizes is not broad enough. Once standardized, the distribution of the values

are collapsed into one single histogram. The estimates of the parameters µ and σ of the

lognormal distributions for each bin are shown in appendix F.

In each histogram we show an inset with a Q-Q plot comparing the sample quantiles

in the vertical axis with the theoretical quantiles in the horizontal axis of a normal distri-
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Figure 5.4: Histograms of Standardized lnyc Conditional on sizec (Binned Linearly) for Different Combina-

tions of the Parameters q and λ . The Inset Plots Are Q-Q Plots for the Normal Distribution. If the Output

is Lognormally Distributed the Dots Should Line Up with the Red Dashed Line. Here, Nc = 1000,Np =

2000,Na = 100.

bution. When the dots line up with the dashed red straight line it indicates that the distri-

bution of ln(yc), conditional on sizec, is approximately normal (i.e., that yc is lognormally

distributed). The plots in fig. 5.4 show that the distribution of ln(yc) is more normal, i.e.,

yc is more lognormally distributed, for small values of q. For large values of q the dots in

the insets show a concave shape, or inverted U, indicating that the distribution of ln(yc) has

thinner right tails than a normal distribution, but heavier left tails. This is expected if yc is

starting to become more normally distributed.

From the histograms, it can also be noted that the distribution’s multimodality becomes

more evident as q increases above 0.5, reflecting the levels of output that are visible in
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fig. 5.1. This multimodality is present for all values of q and λ , and in section 5.4.1 we

derive an analytical expression that explains this behavior.

In the next section we will provide with a mathematical analysis of the balance between

the complexity of the products and the minimum complexity of cities required to produce

those products. Analytical calculations of the multiplicative and distributional aspects of

the model become rapidly intractable, but we will provide with some intuitions behind the

results presented so far.

5.4.1 Analytical Calculations

The following analytical calculations are limited to the case of a Leontief production

function.

Product Complexity VS. City Complexity

Parameters q and λ respectively determine the level of complexity of the products and

of cities. As q increases, for example, the average number of skills that products require

increases as Naq. Similarly, as λ increases, the average number of skills in cities increases

as Naλ . But if products are too complex to produce (i.e., q ≈ 1) and cities are too simple

(i.e., λ ≈ 0), then cities will not be able to produce any product. A question, thus, is how

many skills are required to be able to produce something at all. In other words, given a

level of complexity λ in a city c, what is the maximum complexity q of products such that

Xcp > 0 for at least one product p among the Np?

Mathematically, the condition to produce more than k units of production in more than

np number of products, on average, is:

Np Pr
{

Xcp > k
}
≥ np. (5.9)
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The minimum condition, then, is that there is at lease one product in which a city c is able

to produce one or more units:

Np Pr
{

Xcp > 0
}
≥ 1. (5.10)

For this, we need to derive the distribution of Xcp.

Assume city c has the following skills: ~c = (Cc1,Cc2, . . . ,CcNa). Given a product p

requiring M skills to produce it, a1, . . . ,aM ∈ {1,2, . . . ,Na}, then Xcp can be written as

the minimum of M independent and identically distributed random variables. In our model

Xcp =min{Cca1, . . . ,CcaM}, where Ccal ∼Poisson(λ ), for all l = 1, . . . ,M. From the way we

decided to generate the matrix P, the variable M is a binomial random variable, distributed

M ∼B(Na,q). Hence,

Pr
{

Xcp ≤ k
}
=

Na

∑
l=0

Gk|l Pr{M = l} , (5.11)

where Gk|l is the distribution Pr
{

Xcp ≤ k | product p with M = l
}

. This distribution is in

turn given by

Gk|l = 1−Pr
{

Xcp > k | product p with M = l
}
. (5.12)

That Xcp > k in equation (5.12) means that all the M = l values Cca1, . . . ,Ccal have to be

larger than k. Since they are mutually independent and identically distributed, then the

second term at the right-hand side of equation (5.12) is just the product of the distribution

of Cca:

Gk|l = 1− [Pr{Cca1 > k}]l

= 1− [1−Pr{Cca1 ≤ k}]l

= 1− [1−Rk]
l , (5.13)

where Rk denotes the cumulative distribution of the elements Cca. For our poisson model,

Rk is the distribution of a poisson random variable (see table 5.1), and Rk = Q(bk+1c ,λ ),
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where Q is the regularized gamma function defined as

Q(s,λ ) =
Γ(s,λ )
Γ(s,0)

, where Γ(s,x) =
∫

∞

x
ts−1e−tdt. (5.14)

Putting together equation (5.11) and equation (5.13), we get

Pr
{

Xcp ≤ k
}
=

Na

∑
l=0

(
1− [1−Rk]

l
)

Pr{M = l} , (5.15)

Equation (5.15) simplifies into

Pr
{

Xcp ≤ k
}
= 1−

Na

∑
l=0

[1−Rk]
l Pr{M = l}

= 1−
Na

∑
l=0

[1−Rk]
l
(

Na

l

)
ql(1−q)Na−l

= 1− [q(1−Rk)+(1−q)]Na , (5.16)

where we have used the binomial expansion in the last step. Finally, the exact expression

for the distribution of Xcp is:

Pr
{

Xcp ≤ k
}
= 1− (1−qRk)

Na . (5.17)

Going back to the question about the balance between the complexity of skills in cities

and the complexity of products, we can now use equation (5.17) in equation (5.10), which

becomes Np(1−qe−λ )Na ≥ 1 (where we have used the fact that R0 = Q(1,λ ) = e−λ in our

model). After some rearrangements, we get the following condition:

q≤
(

1−N−1/Na
p

)
eλ . (5.18)

Using Np = 2000 and Na = 100, fig. 5.5 plots the combinations of λ and q that are necessary

for a given city to produce at least one of the products.

Equation (5.18) shows that, in this model, an increase in the number of skills of a city

has an exponential effect on the complexity of the products it can produce.
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Figure 5.5: Balance of Between Complexity of Products and Cities. The Shaded Region Describes the

Combinations of the Parameters q and λ for Np = 2000 and Na = 100 that would Allow Cities to Produce

Something.

Multiplicative Effects in Aggregate Output

Knowing that Xcp in our model can only take values on the natural numbers, equation (5.17)

can be used to calculate the expected value of production per product:

E [Xcp] =
∞

∑
k=0

Pr
{

Xcp > k
}

=
∞

∑
k=0

(1−qRk)
Na . (5.19)

Since the term (1−qRk) is less than 1 and tends to 0 as k→ ∞, and Na is large, the sum in

equation (5.19) can be approximated by taking just the first term of the summation, to get

E [Xcp]≈ (1−qR0)
Na . For our Poisson model, R0 = Q(1,λ ) = e−λ , and this approximation

yields the following relation:

E [Xcp]≈
(

1− q
eλ

)Na

. (5.20)

Equation (5.20) is another instance where it can be seen that a linear increase in product

complexity q can be offset with an exponential effect of an increase in the complexity of

skills in the city λ .
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Our model shows that producing a complex product increases the probability that a city

produces other less complex products. As a consequence, the probability Pr
{

Xcp > 0 | Xcp′ > 0
}

that a city produces product p, given that it already produces other product p′ 6= p, can be

positive. Because of this, we cannot use equation (5.20) to approximate the average out-

put yc as the independent sum of the average production of each product. That is to say,

E [yc|a particular city] 6= NpE [Xcp].

To address this problem, let C(1) ≤C(2) ≤ . . . ≤C(Na) denote the ordered values of the

elements of a city c, ~c = (C(1),C(2), . . . ,C(Na)). The values C(1), . . . ,C(Na) are called the

order statistics of the original i.i.d. random variables C1, . . . ,CNa (throughout this section

we will drop the index c of the elements Cca and keep only the index a of the skills). Let

~p = (P1,P2, . . . ,PNa) be a product. Note that since the values in ~p are independent of the

values in~c, the ordering does not affect how we index the elements in ~p.

Now, reading the vector ~p from left to right, let the random variable A denote the index

of the first element in ~p that is a 1. For example, if ~p = (0,0,1,0,1, . . . ,0), then A takes the

value A = 3. Since all elements of ~p are a i.i.d. bernoulli random variables with probability

q, the random variable A is a geometric random variable

Pr{A = a}=


(1−q)a−1q, for a = 1, . . . ,Na

0, otherwise.
(5.21)

Now, we consider the skills within a city c as given, and we calculate the average output.

For this, we add over all skills the average number of products whose index A is a times
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the value of the skill C(a) that c has for that index:

E [yc |~c] =
Na

∑
a=1

(Np Pr{A = a}) C(a)

=
Na

∑
a=1

Np(1−q)a−1qC(a)

= qNp

Na

∑
a=1

C(a)(1−q)a−1

= qNp
(
C(1)+C(2)(1−q)+C(3)(1−q)2 + . . .+C(Na)(1−q)Na−1) . (5.22)

It is from equation (5.22) that we can understand the multiplicative effect in the aggre-

gate output that emerges from the model, and where the balance between a normal and

lognormal distribution lies.

Let us denote E [yc |~c]≡ y(~c). Taking partial derivatives from equation (5.22), we get

∂y(~c)
∂C(a)

= qNp(1−q)a−1, for a = 1, . . . ,Na. (5.23)

What equation (5.23) reveals is, first, that the average effect on the output of an increase in

one of the skills depends critically on which skill is increased. And second, since 1−q < 1,

that the effect decays exponentially with a. Comparing the effect of one index a to the next

a+1, yields a ratio that quantifies the multiplicative effect, which we denote with the greek

letter ‘omega’:

ω =
∂y(~c)/∂C(a)

∂y(~c)/∂C(a+1)

=
1

1−q
. (5.24)

The prediction is that the multiplicative effect ω will be greater as q→ 1. This is exactly

what is observed in fig. 5.4: as q approaches 1, the distribution becomes multimodal, and

the difference between the levels (i.e., the “modes”) increases. It also explains why in

fig. 5.1 the observed multiplicative effect is 2. Namely, that ω = 2 for that particular plot

because q = 0.5.
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Multiplicative VS. Additive Effects

The other side of equation (5.22) is that it represents a sum of Na terms. If we now let ~c

to be a random vector, we expect that the distribution of yc to approximate a normal distri-

bution as Na→ ∞, even though the terms are not identically and independently distributed

(Frank and Smith, 2011), since the correlations between ordered statistics are typically

weak (Arnold et al., 2008) for thin-tailed distributions such as the Poisson. However, in

our simulations we held fixed Na = 100, and we are here more concerned with the transition

from multiplicative to additive effects induced by the other parameters.

Directly deriving the distribution of yc, however, is not trivial given that it involves

accounting for the distribution of sums of the order statistics C(a).4 But we can study the

distributional properties of equation (5.22) under some limiting circumstances.

The condition for yc to be a lognormal random variable is that ln(yc) must be normally

distributed. According to this, and by taking the logarithm of equation (5.22), what are the

conditions for

ln(q Np)+ ln

(
Na

∑
a=1

C(a)(1−q)a−1

)
to be normally distributed?

A first approximation is to let q→ 1. All the terms except the first (a = 1) can be

neglected in the sum, and we are left with

ln(y(~c))≈ ln(qNp)+ ln
(
C(1)

)
, for q→ 1. (5.26)

4The distribution Pr{C(a) ≤ k} can be derived as follows. The event that C(a) ≤ k can occur if j variables

among C1, . . . ,CNa are less or equal than k, and if the rest Na− j are larger than k. But note that there have to

be at least a values less or equal than k. Therefore, this can happen for all values j = a,a+1, . . . ,Na. Thus,

Pr{C(a) ≤ k}=
Na

∑
j=a

(
Na

j

)
(Rk)

j(1−Rk)
Na− j, (5.25)

where Rk = Pr{Ca ≤ k}.
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If we suppose that the elements of ~c have a distribution such that the minimum, C(1), is

lognormally distributed, then y(C(1)) will be lognormally distributed.

5.5 Discussion

To summarize, the motivations of this project were that: (1) we see economic output

approximately lognormally distributed that suggests a multiplicative process, and (2) that

knowledge and skills are known to have an important role in the productivity of regions.

Hence, we investigated a model of skills in cities from which we found a multiplicative

effected emerged. We believe this multiplicative effect is the first step to understand log-

normal distributions.

The model we proposed and analyzed, is a generalization of the model proposed by

Hidalgo and Hausmann (2009) and Hausmann and Hidalgo (2011). It is a discrete model

that in which the aggregate total output that cities produced is clustered in different lev-

els, increasingly separated by a multiplicative effect. The conclusion that a multiplicative

effect necessarily implies a lognormal distribution is not warranted. Instead, identifying

a multiplicative effect is the first step of many, for understanding the emergence of log-

normals. Part of this is answered by our computational results, which show under which

conditions the distributions of output conditional on city size resembles more closely a log-

normal. Therefore, our results can be summarized not so much as whether we were able

to reproduce lognormality, but rather, that we were able to identify a multiplicative effect.

A question for the future is then, what are the other elements that must be in place that

generate lognormal outputs.

We focused our attention to the analysis of the parameters q and λ . Parameter q gave

us a measure of the complexity of the products, since the average number of skills required

to produce a product is given by Naq. In the same way, parameter λ gave us a measure of

the complexity of cities, since the average number of skills in a city is given by Naλ . These
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notions of product and city complexity are limited by the simplicity of the model, and they

may not reflect the real complexity of cities and products. Nevertheless, they provide a

useful language to think about the underlying causes of the differences in economic perfor-

mance that emerge between cities of the same population size. Namely, the differences in

the complexity of their internal economy and the complexity of the products that they each

produce.

We showed through figs. 5.2 and 5.3 that there are two balances at play. On the one

hand, there is a balance between the complexity of the products and the complexity of

cities. And on the other, there is a balance between normal and lognormal distributions. Or

in other words, between additive and multiplicative processes.

We expressed mathematically the balance between the complexities of products and

cities by equation (5.18). This equation stated that the maximum value of q that allows

a city with parameter λ to produce something at all increases exponentially with λ . The

condition to produce something can be written more generally as

Np (1−qRk)
Na ≥ np, (5.27)

which states the condition in which a city produces on average more than np products with

an intensity Xcp greater than k. Equation (5.18) is a particular case for which np = 1 and

k = 0. With these values R0 = e−λ . This exponential term that appears in equation (5.18)

and also in equation (5.20) comes from the exponential in the poisson probability mass

function. It is thus possible that similar results may or may not hold for other probability

distributions, and should be the subject of future work.5

5A place to start are the exponential family distributions (Marin and Robert, 2007) for which the proba-

bility function can be written as

fCca(k | ~θ) = h(k)e~θ ·~R(k)−Ψ(~θ),

where ~θ is the vector of parameters.

113



One could generalize equation (5.18) to hypothesize that

CPmax =CP0 eCC/CC0, (5.28)

where the CPmax stands for a measure of the maximum complexity of a product that a city

with a complexity of CC would be able to produce. The terms CP0 and CC0 are just scale

coefficients. In our particular model, for instance, CC = Naλ , CP0 = Na

(
1−N−1/Na

p

)
, and

CC0 = Na.

Although equations like (5.20) or (5.28) define relationships between average quanti-

ties, they provide a hint for possible multiplicative mechanisms behind the lognormal dis-

tributions of output that we have observed in urban areas of comparable population sizes.

This multiplicative effect is most evident, for example, in fig. 5.1, in which several dis-

crete levels of production can be seen, separated from each other by a multiplicative factor

(which in case of fig. 5.1 seems to be 2). But this multiplicative effect is in tension with the

additive aspect that implies an aggregate measure of total output. To understand all this we

derived an expression of the average output for a given city and its skills (equation (5.22)).

The balance between multiplicative and additive processes, as is seen in fig. 5.4, is that as

products become more complex, the multiplicative effects are larger. At the same time,

however, this multiplicative effect discretizes the distribution, breaking it into multiple

modes. Again, the analytical expression of such behavior in the model is provided by

equation (5.22).

We quantified the multiplicative effect by ω . This term goes like 1
1−q . In this sense,

equation (5.22) supports the intuitive idea that as products in urban economies require more

and more skills to be produced and become more complex, small changes in some of the

available skills to the city can have a cascading effect on the aggregate economic output.
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If the products require few skills to be produced, then ω→ 1+, and total output becomes

the sum of many factors which contribute about equally to the sum. This situation leads to

a normal distribution of output.

5.6 Concluding Remarks

We have proposed a model, the Poisson model, to study the statistical patterns of eco-

nomic output at the subnational level. In particular, our goal was to explain the lognormal-

like distributions that urban areas of comparable population size display across different

measures of output, such as creative and inventive activities (see chapter 4), homicides (see

chapter 3), and others (see Bettencourt et al., 2010; Alves et al., 2013a,b, 2014; Mantovani

et al., 2013).

Our model was an extension to what Hidalgo and Hausmann (2009); Hausmann and

Hidalgo (2011) proposed to explain the patterns of national exports. Our aim and inter-

pretations of the model, however, were different from Hidalgo and Hausmann’s. While

the original binomial model of Hidalgo and Hausmann was static in time, ours has a time

dimension implicit to it. But more importantly, we modeled not only what cities pro-

duce, but how much, and we studied the hypothesis that differences in skills between urban

economies affect multiplicatively the aggregate urban output.

The model is grounded on the idea that the total output of a city is the aggregate produc-

tion across many products, each of which require a varying set and number of capabilities

to produce them. In this way, if a city has few skills, it might not have the required ca-

pabilities and skills to produce many of the products. But on the same token, acquiring a

single skill, or even replacing one for another, can have an cascading effect in the number

of products that a city may be able to produce, and as a consequence, a multiplicative effect

in its total output. In a way, our results formalize a statement by Florida (2011) that we

quoted in chapter 1: “[w]hen talented and creative people come together, the multiplying
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effect is exponential; the end result is much more than the sum of the parts. Clustering

makes each of us more productive–and our collective creativity and economic wealth grow

accordingly” (Florida, 2011, p. 193).

Naturally, our model is a simplification of the production processes in cities. Nonethe-

less, the model has helped us to understand some aspects of the distributional patterns that

describe differences in urban socio-economic output. This is one aspect of cities that has

recently received little attention. Our study is the first to provide a mechanism that may po-

tentially explain these distributional characteristics. Not surprisingly, the model also opens

up new questions for further investigation. For example, questions about the apparent open-

endedness of the processes of innovation, or about the generation of value not only at the

level of the whole city, but at the level of skills and individuals (i.e., who creates wealth?

who acquires the value?). Also, we simplified how products were defined, and a question

for future work is to investigate the additional sources of heterogeneity that may arise from

generalizing the matrix of products P to have other values other than 0’s and 1’s.

The model also offers some predictions. One is that since the multiplicative effects will

become stronger as cities become more complex and diverse, and as the products they pro-

duce also become more complex by requiring larger sets of skills and capabilities, one may

see then a divergence between cities in terms of their economic output. And another is that

cities with economies with low diversity of skills (i.e., low complexity in their products)

would not display the multiplicative effects, and therefore, would not manifest lognormal

distributions in their output. This is consistent with the intuitions from Florida (1995) that

we quoted in the introductory section. Thus, we hypothesize that urban systems whose

economies strongly relies on the exploitation of natural resources, for example, would not

display lognormal variations in urban output.

It is critical that the robustness of these assumptions is assessed in future work, and that

the predictions of our model are contrasted against empirical data. Only in this way we can
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make progress. This chapter has advanced our understanding of how skill specialization

at the level of individuals and skill diversification at the level of urban areas generate eco-

nomic value. As people rapidly concentrate in urban areas, cities face the urgent problem

of accommodating the diversity of individuals in which they can successfully participate

in the large array of overlapping networks that constitutes the cities (Jacobs, 1969; Bet-

tencourt, 2013; Hausmann, 2013). In this respect, we believe it is essential to understand

how cities integrate human skills and knowledge, and how this is reflected in their aggre-

gate productivity. Understanding this problem could have a particularly positive impact in

developing countries, where urbanization occurs rapidly while education, knowledge, and

skills remain low (The World Bank, 2013).
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Chapter 6

SUMMARY AND CONCLUSION

Urban dynamics, as can be seen, are the ultimate noisy social science

problem. (Storper et al., 2012, p. 4)

In this dissertation I have taken the view that strong fluctuations, broad variability, and

pervasive heterogeneity seem to be at the heart of urban systems, within and across cities.

This is not to say that cities are objects of complete randomness. On the contrary, we take

the view that the noisiness of urban life gives rise to structured and systematic regularities,

although not in the form of exact relations, but rather in the form of statistical relations

and probabilistic statements. Accordingly, I have argued that a deeper understanding of

the mechanisms and generative processes in cities can be gained by addressing the full

statistical characterization of urban quantities. I have used quantities of interest in cities,

such as crime, invention, and creativity to support this.

In chapter 2 we presented a parsimonious null model of an urban system to show that

both the broad variance in urban productivity across cities and its average allometric scaling

with population size can be have a different interpretation than the one implied by the con-

ventional econometric models. Although we have not given economic micro-foundations

to bolster the assumptions of the model, it contributes to the establishment of urban scaling

theory in two ways: (1) it formalizes the use of population size in a statistical account of

urban scaling. And (2), it formally shows how the internal heterogeneities in cities deter-

mine the statistical properties of the aggregate output at a systemic level. The model shows

that when the generative process of individual wealth creation within cities creates extreme

differences in individual productivity, then automatically larger places will be on the ag-
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gregate more productive than smaller places, even though intrinsically they are not. The

reason behind this result is a violation of the Law of Large Numbers. We use this result

to formalize the question about when to use per-capita measures of urban output. The de-

cision to use either of these measures depends on the statistical distribution describing the

individual variables from which per-capita and aggregate measures are constructed. We de-

rived conditions, holding some reasonable assumptions about the underlying distributions,

about the size of socio-economic aggregations of people above which per-capita measures

can have meaningful interpretations.

The take-home message of the null model is that given the finiteness of cities and their

known internal heterogeneities, one must be aware that violations of the Law of Large

Numbers have an important effect on our statistics at the aggregate level. When this viola-

tion occurs, the whole is typically more than the sum of the expected mean of the parts.

We then studied the variability of homicides, a highly stochastic urban metric, to under-

stand the statistical relationship between two broad regularities: urban scaling and Zipf’s

law. This relationship is expressed by a co-dependence between the urban scaling expo-

nents and the exponents of the Pareto laws describing the marginal distributions of popu-

lation size and homicides. This relationship between urban scaling and the marginal distri-

butions was mediated by the distribution of homicides conditional on population size. This

conditional distribution was found to be well fitted by a lognormal distribution. The fact

that we found lognormal variations around the urban scaling law suggested a stochastic

multiplicative process generating such fluctuations.

Then, we used this methodological framework to quantify the statistical constraints on

the creative and inventive activities in urban areas. This study is important in the context

of public policy and decision making, in which we need to understand how probable or

improbable is to increase the skilled workforce of a city in order to enhance its economic

productivity.
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Finally, we addressed the question of how variability in the aggregate productivity of

cities, conditional on population size, results from the variability in the diversity of skills

that cities possess. And the particular question was if, and how, this variability emerges

from a multiplicative process. The expectation was that urban areas not only need a diver-

sity of skills to enhance productivity, but also the “right” mix of skills. And in this way, hav-

ing the right ingredients to produce something results in a multiplicative process. Following

the logic of this argument we explored and expanded the recent theoretical framework pro-

posed by Hidalgo and Hausmann (2009); Hausmann and Hidalgo (2011). Although the

model was originally designed to explain the exports of countries in terms of their diver-

sification, we used the conceptual framework presented in Hidalgo and Hausmann (2009);

Hausmann and Hidalgo (2011) to model how multiplicative effects can emerge in urban

production processes. And we found, through computational simulations and some analyt-

ical calculations, that the increases in skill endowments of cities result in an exponential

increase in the number of products that cities can produce. And we also found that changes

in the portfolio of skills result in multiplicative changes in total output.

Since the seminal paper by Glaeser et al. (1992), important results have revealed an

array of statistical associations between presumed input factors and economic outputs. But

to understand the obstacles to economic development, we need to understand better the

role of size, heterogeneity and structure in cities, which are difficult to treat using conven-

tional regression analysis. The work presented here contributes a small grain to change this

paradigm. We have presented some results to argue that these three notions require an ap-

proach whose objects of study are the probabilistic distributions, and stochastic dynamics,

of urban matters. This is also important for public policies, which we also argue need to in-

corporate in their discourse a distributional perspective. In part because it matters not only

what the averages and variances of what we measure are, but also their overall constraints

characterized through their distributions.
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A.1 Socio-Economic Productivity

The source of the following data is the U.S. Bureau of Economic Analysis (BEA).

A.1.1 Real Personal Income

1. Go to the interactive tables of the BEA regarding the Regional Data on GDP &
Personal Income.

2. In the box “REAL PERSONAL INCOME AND REGIONAL PRICE PARITIES”,
click on “Real personal income (RPI1)”.

3. Mark “Metropolitan Statistical Area” and press “Next Step”.

4. Highlight “All Areas” in the Area box, select “Levels” as the Unit Of Measure and
press “Next Step”.

5. Select the years of interest and press “Next Step”.

A.1.2 Real GDP Per Capita

1. Go to the interactive tables of the BEA regarding the Regional Data on GDP &
Personal Income.

2. In the box “GROSS DOMESTIC PRODUCT BY METRO AREA”, click on “Real
per capita GDP”.

3. Select “All MSAs”, select “Levels” as the Unit Of Measure and press “Next Step”.

4. Select the years of interest and press “Next Step”.

A.1.3 Real Wages

Real wages per job =
Real wages

Number of jobs

=
Wages and salaries/Implicit regional price deflator index

Number of jobs
. (A.1)

A.2 Homicides

Homicides are defined as deaths caused by other persons, intentionally or not. Data
for Colombia is available online at the National Institute of Legal Medicine and Foren-
sic Sciences (http://www.medicinalegal.gov.co) and municipality populations at the
National Administrative Department of Statistics (http://www.dane.gov.co). Brazil’s
population and homicide numbers are available from the Sangari Institute and Brazilian
Ministry of Justice (http://www.sangari.com/mapadaviolencia/). The data spans
the years 2003-2007 for Brazil, 2004-2009 for Colombia, and 2005-2009 for Mexico. Data
for Mexican municipalities was compiled by Valle-Jones (2011).
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We adopted standard definitions of metropolitan areas available at
http://www.secretariasenado.gov.co/senado/basedoc/ley/1994/ley_0128_1994.
html for Colombia. However, comprehensive definitions for many metropolitan areas in
Colombia do not exist officially although they are recognized in various contexts (see for
example http://www.dane.gov.co/files/censo2005/resultados_am_municipios.
pdf for the case of Bogotá). We adopted such unofficial definitions in our analysis. For
Mexico definitions are available at the National Institute of Statistics and Geography,
http://www.inegi.gob.mx/est/contenidos/espanol/metodologias/otras/zonas_
met.pdf, and for Brazil at the Observatory of the Metropolis,
http://www.observatoriodasmetropoles.ufrj.br/metrodata/ibrm/index.html.
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APPENDIX B

A QUESTION ABOUT MARKOV-TYPE INEQUALITIES
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Markov-type inequalities impose bounds on tail probabilities over a random variable
X when we have knowledge about the moments of its distribution. Markov’s inequality,
specifically states the following:

Theorem (Markov’s inequality). Let X be a non-negative random variable and t > 0. Then,

Pr{X ≥ t} ≤ E [X ]

t
. (B.1)

This theorem and others like it (e.g., Chebyshev’s inequality) are of little practical value.
If one knows the distribution of X then one can compute both Pr{X ≥ t} and E [X ]. The
value of the theorem is when one knows E [X ] but does not know the distribution. Note,
however, that in practice we seldom have knowledge about E [X ]. Instead, one usually has
an estimation x̄ of E [X ].

Assuming a sequence of random variables X1,X2, . . . ,Xn identically distributed to X ,
and their average X (n) ≡ x̄ = ∑

n
i=1 Xi/n, one would like a statement that provides bounds

on Pr{X ≥ t}.
In the inequality (B.1) both sides are numbers. Asking for an analogous inequality

when one does not have knowledge about E [X ] but rather about X (n) requires the right-
hand side of equation (B.1) to become a random variable (see, however, Saw et al., 1984).
Hence, such inequality has to be framed as a probabilistic statement. Thus, one has the
following question: How is

Pr

{
Pr{X ≥ t} ≤ X (n)

t

}
bounded?

Rearranging,
Pr
{

X (n) ≥ t Pr{X ≥ t}
}
≤ ? (B.2)

One cannot use Markov’s inequality again (replacing X → X (n) and t → t Pr{X ≥ t}).
Since E

[
X (n)

]
= E [X ], the bound becomes trivially 1.1

This question is related to the one addressed in chapter 2. This is because the sequence
X1, . . . ,Xn can be regarded as the productivity of all n individuals living in a certain city.
Since what we often know is the aggregate productivity Sn = ∑

n
i=1 Xi, the question is what

are the constraints on the probability distribution of Xi from knowing Sn?

1From Markov’s inequality, 1≤ E[X ]
t Pr{X>t} .
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We follow an intuitive proof of equation (2.3) borrowed from Sornette (2006)1:

E [SN ] = N E [X1]

= N
∫

∞

x0

xpX(x)dx. (C.1)

As was mentioned in section 2.2.1, the integral in equation (C.1) diverges. For a fixed
sample size N, however, there will always be a maximum MN = max{X1, . . . ,XN}. This
maximum allows one to truncate the integral.

The random variable MN corresponding to the maximum in the sample has itself an
associated probability density function pMN (x), which we must approximate in order to
be able to compute the integral in equation (C.1). One can find an approximation of this
function noting that the probability that Pr{MN < x}= Pr{X1 < x}·Pr{X2 < x}· · ·Pr{XN <

x} = (Pr{X1 < x})N . In other words, the probability that MN is less than x is equal to the
product (remember we assume independence) of the probabilities that each of the N random
variables Xi is less than x. Rearranging,

Pr{MN < x}=(Pr{X1 < x})N ,

=(1−Pr{X1 ≥ x})N ,

=exp{N ln[1−Pr{X1 ≥ x}]}. (C.2)

For large values of x the probability Pr{X1 ≥ x} is very small, so we can expand the
logarithm using ln(1− x)≈−x:

Pr{MN < x} ≈ exp{−N Pr{X1 ≥ x}}. (C.3)

Given this, we can compute the value x(p,N) which the maximum will not exceed with
probability p≡ Pr

{
MN < x(p,N)

}
:

p≈ exp{−N Pr
{

X1 ≥ x(p,N)
}
}, (C.4)

so

Pr
{

X1 ≥ x(p,N)
}
≈ ln(1/p)

N
. (C.5)

For the case of a power-law probability distribution such as equation (2.2), the quantile
value x(p,N) of the maximum is calculated from(

x(p,N)

x0

)−τ

≈ ln(1/p)
N

, (C.6)

whose solution yields
x(p,N) ≈Cp N

1
τ , (C.7)

1We refer the reader to Bouchaud and Georges (1990) for a more thorough and detailed discussion of this
and related topics.
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where

Cp =

[
xτ

0
ln(1/p)

] 1
τ

. (C.8)

Using equation (C.7) in equation (C.1) to truncate the integral, we can say that, with
probability p,

E [SN ]≈ N
∫ x(p,N)

x0

xpX(x)dx

= N
∫ x(p,N)

x0

x
(

τ

x0

)(
x
x0

)−τ−1

dx

= Nτ

∫ x(p,N)

x0

(
x
x0

)−τ

dx

= Nτxτ
0

[
(x(p,N))−τ+1− x−τ+1

0

]
−τ +1

≈
Nτxτ

0
1− τ

[(
Cp N

1
τ

)−τ+1
− x−τ+1

0

]
=

τ x0

1− τ

[
(ln(1/p))1−1/τ N1/τ −N

]
∝ N1/τ , (C.9)

for τ < 1 and large N.
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In chapter 2 we assumed that the distribution of productivities Xi was a lognormal with
heavy tails (i.e., σ2 ≥ 1). This distribution allowed us to show that even when all the
moments of a distribution are finite, the sum of ∑

N
i=1 Xi scales superlinearly with population

size N (fig. 2.3), and the convergence to the Law of Large Numbers is very slow (fig. 2.6). A
concern, however, is whether the assumption of lognormality is reasonable. In this section
we discuss briefly a simple model that justifies this assumption (Gabaix, 2009).

For the sake of concreteness, let Xi,t represent the total wage (i.e., productivity) of
individual i at time t. The model is constructed upon two ideas:

1. Individuals receive in each time period a random quantity wi,t > 0 (think of it as a
continual influx of money);

2. Their current wage is their previous wage affected by random multiplicative shocks,
denoted by mi,t .

Given this, the total wage of individual i in the period t + 1 is given by the following
recursive equation:

Xi,t+1 = mi,tXi,t +wi,t , (D.1)

where the subscript i will be dropped for simplicity in what follows.
The multiplicative term mt in equation (D.1) is meant to represent the advantages

(mt > 1), or disadvantages (mt < 1), of urban interactions. Social systems, including spatial
agglomerations and cities, are axiomatically characterized by an intricate web of interac-
tions. As a consequence, the individuals in the system acquire and develop their properties
not only from their inherent endowments but more importantly, from their interaction with
their social and physical environments. Mathematically, the interaction between two vari-
ables is typically represented in a model in the form of a multiplicative term (Aiken and
West, 1991).1

Equation (D.1) generates a probability density function pX(x) ∝ x−1−ν for a wide vari-
ety of distribution functions for mt and at , such that mt > 0, at > 0, and 〈ln(a)〉< 0. More
generally, simple multiplicative processes such as these will generate variables with distri-
butions like lognormals (when wt = 0 and X0 > 0), stretched exponentials, and power-laws
(Sornette and Cont, 1997).

Figure D.1 plots the distribution of a particular simulation of the model. There, the
wage of 10,000 individuals has been simulated according to equation (D.1), where each
time step represents a year, and the wage of each individual i was simulated Ti time steps
(representing the lifespan of an individual). Here, the Ti were generated from a normal
distribution with mean 30 and standard deviation 20, and truncated so that Ti > 0 for all i.

This simple model exemplifies the broad distributions that result from multiplicative
processes. We refer the reader to the results by Sornette and Cont (1997), which provide
a stochastic analytical framework to understand the origin of the broad distributions that
might describe the socio-economic properties of individuals in a city.

1Intrinsic difficulties in understanding the meaning of multiplicative relationships has been reported in the
psychological literature, with interesting consequences for pedagogy (see, e.g., Simon and Blume, 1994).
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Figure D.1: Distribution of Wage in Kesten Process. Simulated from 10,000 Individuals Using Equation (D.1)
with Distributions of Age from a Truncated Normal Distribution.
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The following inequalities we use to find the interplay between the population size N
and the moments of the distribution of X1, . . . ,XN that constitute the sum YN = ∑

N
i=1 Xi:

Theorem (Markov’s generalized inequality). Let h be a non-negative, non-decreasing func-
tion and let X be a non-negative random variable. Then

Pr{X ≥ t} ≤ E [h(X)]

h(t)
, (E.1)

for any t > 0.

The other inequality we will use is the Rosenthal inequality (see Rosenthal, 1970 or Lin
and Bai, 2011, Thms. 9.7.b & 9.7.c):

Theorem (Rosenthal’s inequality 2). Let X1,X2, . . . ,XN be a sequence of i.i.d. random
variables, with E [X1] = 0, E [|X1|r]< ∞, and let YN = ∑

N
i=1 Xi. Then

A(r)max
{

NE [|X1|r] ,(NE
[
X2

1
]
)r/2
}
≤ E [|YN |r]≤ c(r)max

{
NE [|X1|r] ,(NE

[
X2

1
]
)r/2
}
,

(E.2)
for some constants A(r) and c(r) only dependent on 2≤ r < ∞.

E.1 Derivation

Recall that X1, . . . ,XN are i.i.d. r.v.’s with E [X1] = µ and YN = ∑
N
i=1 Xi.

Using Markov’s inequality for r > 0,

Pr
{∣∣∣∣YN

N
−µ

∣∣∣∣≥ ε

}
≤

E
∣∣∣YN

N −µ

∣∣∣r
εr . (E.3)

Let Zi ≡ Xi−µ

N and let SN = ∑
N
i=1 Zi =

YN
N −µ . Since Zi are i.i.d. with E [Zi] = 0, Rosen-

thal’s inequality states that if E|Z1|r < ∞, then

E|SN |r ≤ c(r)max
{

NE|Z1|r,(NE
[
Z2

1
]
)r/2
}
, (E.4)

for a constant c(r) and 2≤ r < ∞.
Combining the last two equations, we get

Pr
{∣∣∣∣YN

N
−µ

∣∣∣∣≥ ε

}
≤

c(r)max
{

NE|Z1|r,(NE
[
Z2

1
]
)r/2
}

εr . (E.5)

In order for this inequality to make sense, the right-hand side must be less than 1, and
since we want the left-hand side to be at worst α > 0, this becomes

α ≥
c(r)max

{
NE|Z1|r,(NE

[
Z2

1
]
)r/2
}

εr . (E.6)
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Noting that E|Z1|r = 1
Nr E|Xi−µ|r and E

[
Z2

1
]
= 1

N2 Var[X1], we get

(αε
r)Nr ≥ c(r)

(
NE|X1−µ|r +Nr/2(Var[X1])

r/2
)
. (E.7)
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F.1 Parameter Estimates

Figure F.1: Estimates of the µ Parameter of the Distribution of Standardized lnyc Conditional on sizec, Binned
Linearly, for Different Combinations of the Parameters q and λ . Here, Nc = 1000,Np = 2000,Na = 100.

F.2 Other Production Functions
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Figure F.2: Estimates of the σ Parameter of the Distribution of Standardized lnyc Conditional on sizec, Binned
Linearly, for Different Combinations of the Parameters q and λ . Here, Nc = 1000,Np = 2000,Na = 100.
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Figure F.3: Histograms, Given a Linear Production Function, of Standardized lnyc Conditional on sizec
(Binned Linearly) for Different Combinations of the Parameters q and λ . The Inset Plots Are Q-Q Plots for
the Normal Distribution. If the Output is Lognormally Distributed the Dots Should Line Up with the Red
Dashed Line. Here, Nc = 1000,Np = 2000,Na = 100.
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Figure F.4: Histograms, Given a Cobb-Douglas Production Function, of Standardized lnyc Conditional on
sizec (Binned Linearly) for Different Combinations of the Parameters q and λ . The Inset Plots Are Q-Q Plots
for the Normal Distribution. If the Output is Lognormally Distributed the Dots Should Line Up with the Red
Dashed Line. Here, Nc = 1000,Np = 2000,Na = 100.

150



APPENDIX G

SUPPORTING INFORMATION FOR CREATIVE AND INVENTIVE ACTIVITIES

151



Table G.1: Comparing Probability Density Function Fits for the Distribution of Creative Employment Con-
ditioned on Population Size. This Table Shows the Goodness-of-Fit of Different Bell-Shaped Standard Dis-
tributions to the Logarithmic Counts of the Data. The Best Model, in Relation to the Others Presented, is
Presented in Bold. Note that there Is No Parameter Estimation Involved Here, since the Logarithmic Counts
Have Been Standardized

Goodness-of-fit Laplace(0,1) Logistic(0,1) Cauchy(0,1) Lognormal(0,1)
Log-likelihood -1354.99 -1492.1 -1531.89 -1306.53
AIC 2713.99 2988.21 3067.79 2617.06
BIC 2723.66 2997.88 3077.46 2626.74
p-value (Anderson-Darling) < .0001 0. 0. 0.1466
p-value (Pearson χ2) < .0001 < .0001 < .0001 0.6231

Table G.2: Comparing Probability Density Function Fits for the Distribution of Inventors Conditioned on
Population Size. This Table Shows the Goodness-of-Fit of Different Bell-Shaped Standard Distributions to
the Logarithmic Counts of the Data. The Best Model, in Relation to the Others Presented, is Presented in
Bold. Note that there Is No Parameter Estimation Involved Here, since the Logarithmic Counts Have Been
Standardized

Goodness-of-fit Laplace(0,1) Logistic(0,1) Cauchy(0,1) Lognormal(0,1)
Log-likelihood -1349.19 -1487.82 -1526.17 -1304.19
AIC 2702.82 2979.63 3056.35 2612.39
BIC 2712.49 2989.30 3066.02 2622.06
p-value (Anderson-Darling) < .0001 0. 0. 0.1357
p-value (Pearson χ2) < .0001 < .0001 < .0001 0.23059

G.1 Conditional Distributions Goodness-Of-Fit Tests

In table G.1 and table G.2 are shown some comparative tests of different distributions
that could be fitted to the conditional distributions of creative employment and inventor
counts. Since, from fig. 4.3 it is clear that the logarithmic variables have histograms that are
bell-shaped, we consider in the analysis four standardized distributions: laplace, logistic,
cauchy, and log-normal. The distributions that are not rejected with a confidence level of
p = 0.05 are shown in bold.

G.2 Marginal Distribution Fits

The rationale behind equation (4.4) comes from the fact that we actually estimate the
marginal distribution of Y , and we use the close relationship between creatives and popula-
tion size to derive the distribution of N. The close relationship between Y and N (fig. 4.1)
suggests that whichever behavior we see in the distribution of one we will also see in the
distribution of the other. It turns out, the distribution of Y shows the usual heavy tailed
Pareto behavior seen for population sizes, but with a strong signal of a decay for large
numbers. The reason this decay is more easily detected in Y than in N, we argue, is be-
cause the exponent β > 1 strengthens such decay. In the following, we will first estimate
the empirical distribution of Y , we will then show the derivation for the distribution of N,
and we will present goodness-of-fit comparison with other distributions.

Figure G.1 shows the empirical complementary cumulative distribution of creative em-
ployment and inventors in a log-log plot. Qualitatively, the distributions display a scale-
free regime modulated by a sharper decay in probability at large population sizes. A simple
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Figure G.1: Marginal Distributions of Creatives C and Inventors I Are Well Fit by a Power-Law With an
Exponential Cutoff. We Plot the Empirical Complementary Cumulative Distribution (Blue Circles) with the
Fit (Red Solid Line) Corresponding to the Function in equation (G.1) Using Maximum Likelihood. The
Estimated Exponents Are, Respectively from Left to Right, τ̂C = 1.623 and τ̂I = 1.4603. The Estimates of
the Characteristic Scale of the Exponential Tail Are γ̂C = 1 816 036.2 and γ̂I = 29 381.6. The Vertical Dashed
Gray Lines Are the Minimum Values for which the Distributions Hold and Are ŷminC = 3491 and ŷmin I = 30,
Respectively.

characterization of this distribution is a power-law with an exponential cutoff:

pY (y;τ,γ,ymin) =
γτ−1

Γ(1− τ,ymin/γ)

e−y/γ

yτ
, y≥ ymin, (G.1)

where τ > 0 is the exponent of the power-law, γ is the characteristic scale above which the
exponential decay becomes strong, and Γ(z,a) is the upper incomplete gamma function1

Γ(z,a) =
∫

∞

a
tz−1e−tdt. (G.2)

Since our data is left-censored we do not fit the lower tail of the distribution. Instead, we
consider the values y≥ ymin above a minimum value for which this model holds.

We implement the methodology presented in Clauset et al. (2009) to fit equation (G.1)
to the data. We maximize the log-likelihood of the data for a given ymin above which
the distribution holds. This minimum value is estimated as the one that minimizes the
Kolmogorov-Smirnov distance between the empirical and the fitted distributions.

Now, from fig. 4.1B we know that more than 97 percent of the variability in creative
employment is explained by population size. If we assume the relationship Y = Y0Nβ is
exact, we can use the conservation of probabilities

pY (y)dy = pN(n)dn (G.3)

1The lower and upper incomplete gamma functions, γ(z,a) and Γ(z,a) respectively, are such that γ(z,a)+
Γ(z,a) = Γ(z).
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Table G.3: Different Estimated Probability Density Functions to Fit Population Size Distribution. PLEC
Stands for “Power-Law with Exponential Cutoff”, Given by equation (G.1), and PL Stands for “Power-
Law”, Given by a Density p(n) ∝ n−α . All Four Distribution were Truncated from Below by the Same n̂min
Estimated Using equation (G.8).

Goodness-of-fit pN(α,β ,ν ,nmin) PLEC(τ,γ,nmin) Lognormal(µ , σ ) PL(nmin, α)
Loglikelihood -9996.41 -10546.3 -10223.5 -10000.6
AIC 20000.8 21098.5 20451.1 20005.2
BIC 20019.4 21112.6 20460.3 20014.5
p-value (Anderson-Darling) 0.6889 0.3193 0. 0.0255
p-value (Pearson χ2) 0.3970 0.5338 0. 0.3083

to derive the distribution of N. Since dy/dn = βY0nβ−1, we have that

pN(n) = pY (y)
dy
dn

=
βγτ−1

Γ(1− τ,ymin/γ)

e−Y0nβ /γ

Y τ−1
0 nβτ−β+1

. (G.4)

Equation (G.4) can be written as

pN(n;α,β ,ν ,nmin) =C
e−(

n
ν )

β( n
ν

)α , n≥ nmin, (G.5)

where the constant of normalization is given by

C = β
ν−1

Γ

(
1−α

β
,
(nmin

ν

)β
) ,

and

α = β (τ−1)+1 (G.6)

ν =

(
γ

Y0

)1/β

(G.7)

nmin =

(
ymin

Y0

)1/β

. (G.8)

This way, although the distribution of N has four parameters, they are fully determined
by the parameters of pY (y) and the regression between Y and N. When using the esti-
mates τ̂ , γ̂ , and ŷmin, from creative employment, we get from equations (G.6)-(G.8) that
α̂ = 1.675, β̂ = 1.083, ν̂ = 11,329,658, and n̂min = 35,141.6, which are the estimations
reported in the main text.

Table G.3 presents goodness-of-fit comparisons as given by the Akaike Information
Criterion and the Bayesian Information Criterion with other distributions. The distributions
that are not rejected with a confidence level of p = 0.05 are shown in bold.

154



Figure G.2: Relative Growth Rates of the Twenty Largest MSAs as of 2010 Versus Their Population Size.
The Data Goes Back to 1800 and the Data is from the Available Decennial U.S. Population Census. The Plot
Suggest that when Cities Approach Population Sizes of Approximately 5 Million Inhabitants, their Growth
Falls Relative to the Rest of the Country.

G.3 Population Growth Rate Versus Population Size

We plot in fig. G.2 the relative population growth rates per decade (i.e. the growth rate
of city i divided by the national growth rate over ten year periods) versus the population
size, for the 2010’s twenty largest MSAs. As is custom the x-axis is plotted in logarithmic
scale given the broad range of city populations observed. Although very few MSAs grow
to the point of approaching our estimated value ν̂ ≈ 11,000,000, a qualitative tendency is
seen whereby the growth decays as cities become bigger.
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A maximum-likelihood procedure is presented here aimed to test whether the annual
number of homicides in cities of a given size is described by a Poisson distribution. Homi-
cides are assumed to be improbable events for which, when aggregated in annual counts,
the law of rare events should hold. When we test the likelihood of this null hypothesis, we
find that we can reject it with high confidence. This means that the underlying dynamics
of homicides are more complex than the simple model implied by a Poisson process. The
methodology is general enough to be applied to other distributions. Future work would also
point to the development of a process by which crime is contagious through a topology of
influences, which would introduce positive effects on the distribution of homicides.

In chapter 3 we found that: when Y represents the annual number of homicides and N
the population size (both taken as random variables), we have empirically found that the
probabilistic expression P(N = n|Y = y) resembles a lognormal distribution, with E[N|Y =

y] = N0 y1/β and variance Var(lnN|Y = y) = σ2 independent of y (see fig. 3.4). When
P(Y = y) is power-law distributed, it can be shown that P(Y = y|N = n) is also a lognormal
distribution (using Bayes’ rule).

The result about the lognormality of the conditional distribution of homicides given
population size is surprising because the law of rare events would be expected to be at work.
When dealing with accumulated annual number of homicides in a city, the distribution
should result in a Poisson distribution instead of a lognormal distribution. In other words,
the Poisson distribution is a null hypothesis that must be rejected before proposing other
distributions.

Here we develop a procedure to test the hypothesis of a Poisson distributed number of
homicides given a certain city population. We approach the problem using a maximum-
likelihood method.

H.1 Methods

Let N and Y be the random variables representing the city population and the cor-
responding number of homicides in a year, and let ni and yi be the actual data for the
population and annual number of homicides of city i, i = {1, . . . ,S} with S being the total
number of cities considered. We assume that the average number of homicides is given by
the function

E[Y |N = ni]≡ y(ni) = y0 nβ

i . (H.1)

Under the assumption expressed by equation (H.1), the hypothesis to test is that

P(Y = yi|N = ni) = e−y(ni)
y(ni)

yi

yi!
. (H.2)

Supposing that the homicides between cities are independent, the maximum-likelihood
estimation of the parameters y0 and β is calculated by computing the likelihood of the data
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(here denoted as {n} and {y}), and finding the values that maximize it:

L({n},{y},y0,β ) =
S

∏
i=1

e−y(ni)
y(ni)

yi

yi!
(H.3)

⇒ ∂ lnL
∂y0

∣∣∣∣
ŷ0

= 0

∂ lnL
∂β

∣∣∣∣
β̂

= 0.

This yields

S

∑
i=1

(
yi− ŷ0 nβ̂

i

)
= 0 (H.4)

S

∑
i=1

lnni

(
yi− ŷ0 nβ̂

i

)
= 0. (H.5)

We can use appendix H.1 to replace ŷ0 in appendix H.1 in order to have a function of one
variable for which we have to find its root f (β ) = 0. To this end, we use the Newton-
Raphson method, which consists of finding the root xi+1 of the tangent line of f (x) at a
given point xi, and iterating this several times. In mathematical terms, we iterate in our
case

βi+1 = βi−
f (βi)

f ′(βi)

β0 = seed,

where we choose the seed to be reasonably close to the real root, for the sequence to
converge correctly (βi→ β̂ ).

The procedure to test our hypothesis expressed in equation (H.2) will be the following:

1. Estimate the MLE parameters ŷ0 and β̂ from the actual data.

2. Compute the log-likelihood L (real) = lnL
(
{n},{y}, ŷ0, β̂

)
of the actual data.

3. Generate R synthetic sample sets {y(synthetic)} (each of length S) from the probability
distribution of equation (H.2) given the real populations {n}.

(a) Estimate the MLE parameters ŷ0
(synthetic) and β̂ (synthetic) from the synthetic sam-

ple.

(b) Compute the log-likelihood L (synthetic)= lnL
(
{n},{y(synthetic)}, ŷ0

(synthetic), β̂ (synthetic)
)

of the synthetic sample.

4. Count the fraction p of the synthetic samples that had L (synthetic) ≤ L (real). We
should understand p as a goodness-of-fit statistic for the Poisson distribution given
the scaling relation in equation (H.1).
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Country β y0 L (real) max(L (synthetic)) min(L (synthetic)) p
Colombia 1.326 1.081e-05 -4485.8 -1562.5 -1686.1 0.0∗
Mexico 0.965 13.922e-05 -4193.8 -2645.7 -2859.9 0.0∗
Brazil 1.213 1.729e-05 -11977.9 -7258.1 -7565.4 0.0∗

Table H.1: Table Showing the Maximum-Likelihood Estimations of the Data Assuming a Poisson Distri-
bution for the Distribution of Homicides Given a City Size. R = 1000 Synthetic Data Were Generated.
According to These Results, the Plausibility that the Real Data Holds to a Poisson Distribution, p = 0.0∗ Is
Very Low.

H.2 Results

The maximum-likelihood estimators were calculated with R = 1000 synthetic samples
according to the mentioned procedure, using a seed of β0 = 1.0 in each case, and the results
are shown in table H.1. As can be observed, the Poisson distribution can be rejected with
high confidence given that p = 0.0∗, and we can see that the likelihood of the actual data is
much smaller than the smallest of the likelihoods of the synthetic data.

To get a sense of the difference between the real data and the synthetic data, a compar-
ison is shown in fig. H.1. One of the reasons why a Poisson distribution does not describe
the data from the figure is the fact that the variance is much greater in the data than in the
simulations, which was already evident from fig. 3.4, where the variance (bottom row) did
not show a dependence on yi, in opposition to a Poisson distributed random variable whose
mean is equal to its variance.

Figure H.1: Top Row: Scatter Log-Log Plots of the Actual Homicides Versus Population in 2007. In All
Three Countries Large Deviations from the Fit Are Displayed. Bottom Row: Scatter Log-Log Plots of
Typical Synthetic Homicides Versus Population Assuming a Poisson Distribution. It is Clear that the Real
Data Shows Greater Variance and Is Not Consistent with a Poisson Distribution. It is Important to Notice that
Because of the Logarithmic Scales, the Municipalities with Zero Homicides Are Not Shown.
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As a marginal comment, note that the stance here is from a frequentist perspective;
i.e. we assume one particular possible model of reality, we estimate its parameters which
we assume to exist objectively, and generate several random samples from it. A Bayesian
approach would have assumed that our uncertainty about the model and the parameters
should have been expressed through probability priors, and the methodology would have
included those considerations.

The results, however, are straightforward in showing that the simple Poisson distribu-
tion is not a good model for the data we see in reality.

H.3 Discussion

The method presented here to assess whether a particular distribution describes well
the data has proven useful to reject the hypothesis that the annual number of homicides
in a city is a Poisson random variable, assuming that on average homicides scale with the
population size in a non-linear way.

The greater variance not accounted for by a Poisson distribution (fig. H.1) tells us some-
thing about the mechanisms underlying urban homicides. Recently, researchers Sah (1991);
Glaeser et al. (1996); Gaviria (2000); Calvó-Armengol and Zenou (2004) have pointed out
that the dynamics of crime is strongly dependent on the dynamics of interaction. Moreover,
they focus on thinking about crime in terms of the decisions of agents to become criminals
dependent on the level of criminality of their local social neighborhood. In this spirit they
argue that crime is contagious, which would in turn explain the excess of variance seen in
the number of homicides.

160


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	What Are Cities?
	What Advantages does a Distributional Approach Bring?
	Overview of the Topics
	Are Cities Finite Systems that Violate the Law of Large Numbers?
	Urban Laws
	Human Capital
	The Structure of Diversification


	A DISTRIBUTIONAL APPROACH TO URBAN PRODUCTIVITY
	Introduction
	Aggregate or Per Capita Metrics?
	The Lévy Case

	A Simple Null Model of an Urban System
	Mathematical Statement of the Problem Regarding the Validity of Per Capita Measures
	Analytical Results
	Relationship Between Intravariability and Scaling
	Constraints on the Population Size

	Summary and Discussion
	Concluding Remarks

	THE STATISTICS OF URBAN SCALING AND THEIR CONNECTION TO ZIPF'S LAW
	Introduction
	Results
	Scaling Relations and Units of Analysis
	Bayesian Approach to the Statistics of Urban Indicators
	Estimating the Distribution of Total Urban Homicides
	Estimating TEXT and Deriving TEXT
	The Connection Between Lognormal Statistics, Urban Scaling and Zipf's Law

	Discussion
	Materials and Methods
	Power-Law Fits
	Lognormal Fits
	Parameter Estimation of TEXT
	Zipf's Law Derivation


	ARE THERE CONSTRAINTS ON CREATIVE AND INVENTIVE ACTIVITIES IN URBAN AREAS?
	Introduction
	Research Design
	Data and Definitions
	Estimations of Probability Functions
	Interpretations of Probability Distributions
	Visualization of Probability Distributions
	Limitations of Our Analysis

	Results
	The Role of Population Size and Its Constraints
	The Distribution of Creative and Inventive Activities for Cities of Comparable Population Size
	Multiplicative Random Processes

	Conclusion

	COMPUTATIONAL MODEL OF SKILLS DIVERSIFICATION AND URBAN DIFFERENTIATION
	Introduction
	Conceptual Framework
	Production in Cities
	Limitations

	Simulation
	The Binomial Model
	The Poisson Limit and Model Parameters

	Results
	Analytical Calculations

	Discussion
	Concluding Remarks

	SUMMARY AND CONCLUSION
	REFERENCES
	DATA
	Socio-Economic Productivity
	Real Personal Income
	Real GDP Per Capita
	Real Wages

	Homicides

	A QUESTION ABOUT MARKOV-TYPE INEQUALITIES
	SCALING OF THE `LEVY CASE'
	KESTEN PROCESS
	COMBINING MARKOV'S AND ROSENTHAL'S INEQUALITIES
	Derivation

	ACCOMPANYING PLOTS FOR HISTOGRAMS OF THE POISSON MODEL
	Parameter Estimates
	Other Production Functions

	SUPPORTING INFORMATION FOR CREATIVE AND INVENTIVE ACTIVITIES
	Conditional Distributions Goodness-Of-Fit Tests
	Marginal Distribution Fits
	Population Growth Rate Versus Population Size

	REJECTING POISSON FOR THE CONDITIONAL DISTRIBUTION OF HOMICIDES
	Methods
	Results
	Discussion






