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ABSTRACT

Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With
it, the notions of size, heterogeneity and structure have taken a leading role. These notions
are assumed to be behind the causes for why cities differ from one another, sometimes
wildly. However, the mechanisms by which size, heterogeneity and structure shape the
general statistical patterns that describe urban economic output are still unclear. Given
the rapid rate of urbanization around the globe, we need precise and formal mathematical
understandings of these matters. In this context, I perform in this dissertation probabilis-
tic, distributional and computational explorations of (i) how the broadness, or narrowness,
of the distribution of individual productivities within cities determines what and how we
measure urban systemic output, (ii) how urban scaling may be expressed as a statistical
statement when urban metrics display strong stochasticity, (iii) how the processes of ag-
gregation constrain the variability of total urban output, and (iv) how the structure of urban
skills diversification within cities induces a multiplicative process in the production of ur-

ban output.
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Chapter 1

INTRODUCTION

The motivation behind the present dissertation is to understand what the obstacles to
the economic development of human societies are. This is a question too big for any one to
answer, much less in a single document. But the question, nonetheless, has been the moti-
vation behind this work, and the work of many academics from a large array of disciplines,
from medicine, architecture and engineering to history, sociology and political science, and
most predominantly, economics. These disciplines offer different points of view for how to
address questions about the obstacles to economic development. This dissertation rests on
the view that these obstacles will be understood once we figure out how the socio-economic
processes that create, occur in, and transform cities work.

In the last decade cities have become a hot topic of research. In part, the works of
Jane Jacobs and Robert E. Lucas, Jr. (Jacobs, |1969; [Lucas Jr., [1988)) were fundamental to
sway the researchers’ attention from nations to cities. The reason, they argued, is because
many of the proposed causes behind economic growth depend on effects that act locally
(for an interesting counter argument read |Polese, [2005). For example, regarding the effects
of skills and knowledge on economic growth, Lucas Jr. (1988, p. 37) writes: “The external
effects [of human capital] have to do with the influences people have on the productivity of
others, so the scope of such effects must have to do with the ways various groups of people
interact” (emphasis mine). He continues, “we know from ordinary experience that there are
group interactions that are central to individual productivity and that involve groups larger
than the immediate family and smaller than the human race as a whole. Most of what we

know we learn from other people” (Lucas Jr., 1988, p. 38). Finally, he concludes, “What



can people be paying Manhattan or downtown Chicago rents for, if not for being near other
people?” (Lucas Jr., {1988, p. 39).

But the recent focus on cities comes also from recent events. The year 2008 marked a
transition point in human history in which city dwellers became a worldwide majority when
compared to their rural counterparts, according to the United Nation In the World Eco-
nomic and Social Survey 2013, the United Nations warned that new strategies are needed
that address the impacts of urbanization to create a sustainable model of economic devel-
opment (United Nations, 2013)).

Indeed, the fact that half of the human beings now live in urban areas means that what
they do in their lifetime will affect many more people than if they lived in rural areas.
By living in a city, their actions will touch more dimensions of the world as a whole,
simply because they will have access to more material and informational resources. A
major question from this point of view is: how does the activity of single urban dwellers
spread through society? Some of these human beings will experience drastic changes in
their quality of life, income, education, and health. Some of these changes will create more
overall wealth, while others will generate more poverty. Our lack of understanding for how
this will happen is disturbing. In this state of affairs we need formal understandings of the
processes of urbanization.

In this dissertation I develop some approaches that incite new questions to understand
cities and open new avenues of research. I do this by building on the recent efforts coming
out of the Santa Fe Institute in New Mexico that aim to develop a New Science of Cities
(Bettencourt and West, [2010).

One of the distinctive aspects of these efforts is that they are motivated by the expec-
tation that all cities share some empirical regularities regardless of time, place and culture

(Bettencourt et al., | 2007a, 2013} Bettencourt, 2013;|Ortman et al., 2014). These regularities
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compel the development of a scientific theory of urban phenomena. This theory would ex-
plain these regularities based on a few principles about how cities function and develop, and
would produce predictions that would be testable with data. Cities, according to this line
of research, are different manifestations of the same phenomenon: human agglomerations
giving rise to an ecology of social interactions that creates wealth and drives population
growth, leaving a physical mark of infrastructure that feeds on itself to perpetuate human
interaction.

One of the main regularities is an apparent simple empirical association between dif-

ferent urban metrics Y and population size N, in the form of a power-law relationship:
Y =Y, NP. (1.1)

The novelty of this result does not lie in the fact that there is an association between urban
metrics and population size. Also, it is not that the association is non-linear. The novelty
in this discovery is that it is simple (Batty, 2008), and that the exponent 3 presents some
unexpected regularities, especially when compared to its biological analogue (West et al.,
1997, {1999; [West and Brown, 2005|).

Bettencourt et al.|(2007a) show that for measures of infrastructure, like number of gas
stations, hospitals, length of roads, etc., the exponent is typically Bi,s. = 0.85; For measures
of socio-economic activity, like total Gross Domestic Product (GDP), crime rates, patenting
rates, etc., Bsocec. = 1.15.

Such a relationship is reminiscent of other relationships in the history of Science that
gave way to general scientific theories. Table lists some few popular examples. This
is a very short list among several similar scaling relationships that have revealed important
aspects of how natural systems function.

A theoretical explanation of equation was recently proposed by Bettencourt (2013)).

According to this explanation, equation (1.1} arises from the spatial mixing of agents, with



Table 1.1: Scaling Relationships That Gave Way to Deeper Understandings of Nature.

Quantities Scaling Law Name Theory

Orbital period T and T =Ty A2 Kepler’s third law Newton’s theory of
distance to the Sun r planetary motion
Average radios of dif- r=rg /2 Law of diffusion Einstein’s theory of
fusion r and time ¢ Brownian motion
Metabolic rate B and B = By M>/* Kleiber’s law Metabolic Theory of
body mass M Ecology

limited resources and subject to transportation costs, interacting through physical infras-
tructure (Bettencourt, [2013)).

A note on the difference between this approach and others that have been proposed
to understand quantitatively cities, coming mostly from the field of economics, is worth a
few words. The importance of populatio